您现在的位置是: 首页 > 高考调剂 高考调剂
15高考数学答案_2015高考数学真题及答案
tamoadmin 2024-07-06 人已围观
简介1.2018年四川高考数学试卷试题及答案解析(答案WORD版)2.高考乙卷数学选择题答案分布规律是什么3.湖北2015年高考数学题难吗4.高考数学中圆锥曲线的经典例子?5.2005江西高考数学题及答案今天小编辑给各位分享2022高考数学题及答案的知识,其中也会对2020高考数学题及答案解析分析解答,如果能解决你想了解的问题,关注本站哦。2022年全国乙卷高考数学试题答案数学是人类对事物的抽象结构与
1.2018年四川高考数学试卷试题及答案解析(答案WORD版)
2.高考乙卷数学选择题答案分布规律是什么
3.湖北2015年高考数学题难吗
4.高考数学中圆锥曲线的经典例子?
5.2005江西高考数学题及答案
今天小编辑给各位分享2022高考数学题及答案的知识,其中也会对2020高考数学题及答案解析分析解答,如果能解决你想了解的问题,关注本站哦。
2022年全国乙卷高考数学试题答案
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。
2022年全国乙卷高考数学试题答案
全面认识你自己
认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。
首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。
其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。
最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。
高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。
与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。
此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。
在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。
考生个人特征情况
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
2022年全国乙卷高考数学试题答案相关文章:
★2022高考全国乙卷试题及答案
★2022高考理科数学乙卷试题解析
★2022年全国乙卷高考理科数学
★2022年全国乙卷文科数学卷真题公布
★2022年高考数学试题及答案
★2022年全国乙卷高考数学真题及答案
★2022年全国理科数学卷试题答案及解析
★2022全国Ⅰ卷高考数学试题及参考答案一览
★2022年英语全国乙卷试题及答案
★2022年高考乙卷数学真题试卷
2022年全国新高考1卷数学试题及答案解析
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学试题答案解析
高考数学复习主干知识点汇总:
因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
2022年全国新高考1卷数学试题及答案解析相关文章:
★2022高考甲卷数学真题试卷及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022高考全国甲卷数学试题及答案
★2022高考数学大题题型总结
★2022全国乙卷理科数学真题及答案解析
★2022年全国乙卷高考数学试卷
★2022年新高考1卷语文真题及答案解析
★全国新高考一卷2022语文试题及答案一览
★2022江西高考文科数学试题及答案
★2022全国新高考II卷语文试题及答案解析
2022年全国新高考1卷数学试题及答案详解
高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学答案详解
2022高考数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式
②根据具体问题中的数量关系列不等式并解决简单实际问题
③用数轴表示一元一次不等式的解集
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
一、排列
1定义
从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
排列数的公式:Amn=n
特例:当m=n时,Amn=n!=n×3×2×1
规定:0!=1
二、组合
1定义
从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM
2.排列与组合
Anm=n-=n!/!Ann=n!
Cnm=n!/!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法
插空法间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
把具体问题转化或归结为排列或组合问题;
通过分析确定运用分类计数原理还是分步计数原理;
分析题目条件,避免“选取”时重复和遗漏;
列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn
特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力
2022年全国新高考1卷数学试题及答案详解相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考甲卷数学真题试卷及答案
★2022北京卷高考文科数学试题及答案解析
★2022高考全国甲卷数学试题及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022全国乙卷理科数学真题及答案解析
★2022高考数学大题题型总结
★2022年高考全国一卷作文预测及范文
★2022年高考数学必考知识点总结最新
★2022年全国乙卷高考数学试卷
2022年北京高考数学试题及参考答案
相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!
2022年北京高考数学试题
2022年北京高考数学试题参考答案
高考数学答题策略
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
2022年北京高考数学试题及参考答案相关文章:
★2022数学高考题及答案
★2022新高考数学Ⅰ卷试卷及参考答案
★2022年全国Ⅰ卷高考数学试题及参考答案公布
★2022全国一卷高考数学试题及答案
★2022新高考全国一卷数学试卷及答案解析
★2022年高考数学试题及答案
★2022全国新高考Ⅰ卷数学卷完整试题及答案一览
★2022新高考全国一卷数学试卷答案解析
★2022年高考数学全国乙卷试题答案
★2022新高考数学试题及答案详解
2018年四川高考数学试卷试题及答案解析(答案WORD版)
令t=3^x 所以x=log3(t) 带入原式 f(t)=4log3(t)*log2(3)+233=4log2(t)+233
所以f(x)=4log2(x)+233
所以所求式=4(log2(2)+log2(4)+...+log2(2^8))+233*8=2008
高考乙卷数学选择题答案分布规律是什么
2018年四川高考数学试卷试题及答案解析(答案WORD版)
2015四川高考数学试卷点评
2015年高考数学试卷,遵循《考试大纲》及《考试说明(四川版)》要求,与近年来试题风格一致,切合当前数学教学实际,体现课程改革理念,符合高考考试性质,在平稳推进的基础上有所创新。试题设计立足于学科核心和主干,充分体现数学的科学价值和人文价值,将知识、能力和素质融为一体,深化能力立意,强化知识交汇,重点考查支撑数学学科体系的内容,充分考查基础知识、基本方法、基本思想,深入考查考生的运算求解能力、推理论证能力、抽象概括能力、空间想象能力、应用意识和创新意识,突出考查数学思维、数学思想方法,合理考查学生的探究意识和学习潜能。
全卷难度设置符合高中学生数学学习现状,重视教材考基础,突出思维考能力,体现课改考探究,展现了数学的抽象性、逻辑性、应用性和创造性,突出试题的基础性、综合性、原创性和选拔性,试卷布局合理、层次分明,问题设计科学、表述规范,有利于准确测试不同层次考生的学习水平。
一、重视教材与基础,突出核心内容
试题高度重视教材价值的挖掘与联系,有的题目直接由教材的例题或习题改编,有的问题产生于教材背景。文理科1-8、11-13、6-19等题源于教材,又高于教材,充分发挥了教材在理解数学、理解教学等方面的价值。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,能够有效引导中学数学教学重视教材、深刻理解教材,对进一步推进课程改革、减轻学生过重的学业负担具有良好的导向作用。
全卷重视基础知识的全面考查,覆盖了整个高中数学的所有知识板块;试题设计立足于高中数学的核心和主干,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科4、8、9、13、15、21,文科4、5、8、15、21等题,全面考查函数概念、性质等基础知识;理科5、10、20,文科7、10、20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科14、18题考查空间线面关系和面面夹角的计算,文科14、18题考查空间线面关系、三视图和体积的计算;理科17题,文科3、17题,考查概率统计相关知识;文理科16题,考查数列相关知识;文科3题考查分层抽样的概念,需要考生认识其本质属性;理科14题考查空间线线角的计算,如果概念不清,即使运算无误也不能获得正确结果。这样的内容设计,在全面考查基础的同时,突出考查支撑学科体系的的内容,重视对基础知识和通性通法的考查,对高中毕业生的数学基础和素养进行重点测试,保证了试卷的内容效度,有利于中学数学教学重视基础、强化核心内容和主干知识、回归数学本质。
二、注重能力与方法,强化数学思维
试卷以能力立意设计试题,多角度、多层次地考查了运算求解能力、推理论证能力、空间想象能力、抽象概括能力、数据处理能力、应用意识和创新意识。在此基础上,特别突出了对数学思维的全面、深刻考查,大量题目充分考查了观察、联想、类比、猜想、估算等数学思维方法与能力,对函数与方程、数形结合、分类与整合、化归与转化、特殊与一般等数学思想进行了全面考查。理科15、16、21题,文科15、21题,既考查了几何直观、联想、猜想、估算等直觉思维,又要求考生进行精确计算、严密推理;理科13、17题,文科8、17题,考查了运算求解能力、应用意识;文理科15题,考查了直觉猜想、抽象概括、推理论证和创新意识,对数学思维进行了全面考查,其特点是运算量小、思维量大;文理科16-21等题重点考查运算求解能力和推理论证能力;文理科20、21题,要求考生具备高水平的抽象概括能力、推理论证能力、运算求解能力、数学探究意识和创新意识,考查了多种数学思想与方法。
全卷注重考查学生对数学基本概念、重要定理等的理解与应用,注意控制和减少繁琐的运算。理科7、9、10、14、15、20、21题,文科7、9、10、14、15、21等题,如果灵活运用数形结合、化归与转化、特殊与一般等数学思想,就可简化解题过程、避免繁琐运算;文理科15题,虽然思维要求高,但在深刻理解问题本质的基础上,运用函数与方程、数形结合思想解答,并不需要特殊技巧与复杂运算。这类问题背景深刻、构思巧妙、取材适当、设问合理、切合实际,侧重考查考生对知识的理解和应用,强调科学性、严谨性、抽象性、探究性、综合性和应用性的考查,能够有效检测考生将知识、方法迁移到不同情境的能力,从而检测考生的思维广度、深度以及进一步学习的潜能。
三、关注探究与创新,体现课改理念
试卷从学科整体和思维价值的高度设置问题情境,注重知识间的内在联系与交汇;通过适当增强试题的`综合性,分层次设置试题难度,能更好地体现考试的选拔功能。理科9题涉及函数单调性、线性规划与基本不等式,文理科10题联系抛物线、圆、圆的切线和数形结合思想,具有较强的综合性和一定的难度;理科19题综合三角恒等变换与解三角形,立意鲜明、情境新颖、形式优美,考查考生思维的灵活性;文理科21题,以对数函数、二次函数、导数、函数零点、不等式等知识为载体,考查考生综合运用数学知识、数学方法、数学思想的能力。这样的试题对数学思维的灵活性、深刻性、创造性都有较高要求,具有一定的难度,解答这些问题,需要具有较强的分析问题、探究问题和解决问题的能力。
试题设计紧密结合数学学科特点,通过对探究意识、应用意识和创新意识的考查,充分体现了课程改革理念。文理科10、15、20、21等题考查了探究意识,考生需要深入分析问题情境,从特殊到一般、从直观到抽象进行不同侧面的探究,并合理运用相应的数学方法和思想才能准确、迅速解答。理科20题要求考生探究定点是否存在,若假设定点坐标直接求解则有不少运算障碍;若通过特殊情形的解决,寻求一般的、运动变化的问题的解决思路和方法,对具体的对象进行抽象概括,完成解答则相对简单。这样的问题设计,针对考生的探究意识和创新意识进行考查,保障了试题对较高学习水平层次考生的良好区分。理科13、17,文科8、17等题以考生熟悉的现实生活背景考查考生提炼数量关系、将现实问题转化为数学问题并构造数学模型加以解决的能力,体现了应用意识和实践能力的考查特点。文理21题展示了数学学科的抽象性和严谨性,要求考生具有高层次的理性思维,考生解答时可以采用“联系几何直观—探索解题思路—提出合情猜想—构造辅助函数—结合估算精算—进行推理证明”的思路,整个解答过程与数学研究的过程基本一致,能较好地促进考生在数学学习的过程中掌握数学知识、探究数学问题和发现数学规律。这些试题具有立意深远、背景深刻、设问巧妙等特点,富含思维价值,体现了课程改革理念,是检测考生理性思维广度、深度和学习潜能的良好素材。这样的设计,对考生评价合理、科学,鼓励积极、主动、探究式的学习,有利于引导中学数学教学注重提高学生的思维能力、发展应用意识和创新意识,对全面深化课程改革、提高中学数学教学质量有十分积极的作用。
湖北2015年高考数学题难吗
高考数学选择题题型及分布规律都非常固定,选择题大家要根据近几年试卷总结常考题型和知识点,这些内容一般会是高频考点,先攻克这些内容,然后再去突破一些不稳定题型或者创新题。
2023高考数学选择题题型及分布规律
1.集合交并补运算? 2.充分必要条件,命题真假? 3.复数四则运算? 4.三视图恢复与,体积表面积内外截球计算? 5.算法循环结构 6.概率,排列组合计算,积分计算? 6.函数奇偶周期对称抽象函数与导函数(及结论)? 7.分段函数 8.空间几何平行垂直夹角体积计算? 9.线性规划? 10.三角函数求值? 11.解三角形相关夹角面积周长
12.向量共线垂直乘积夹角模长最值及向量有关三角形计算等? 13.数列通项,某一项,求和,最值? 14.复杂图形辨别及导数相关图形辨别? 15.函数比较大小,非常规(指数,对数,三角,抽象)不等式求解及恒成立,参数范围求解。 16.基本不等式相关最值? 17.统计(抽样,频率分布直方图,数字特征及图形相关概率)
18.导函数,抽象导函数,单调性,切线,最值及导数不等式压轴? 19.线(直线,切线,弦),曲线(椭圆,双曲线,抛物线),点(中点),图形(三角形,菱形,矩形)与圆(特殊,普通)关系? 20.圆锥曲线方程,离心率,最值及参数等相关计算? 21.创新题? 22.综合类复杂题多为参数范围求解综合类问题
2023高考数学选择题解题技巧
1、剔除法:利用数学选择题已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2、特特殊值检验法:对于具有一般性的数学选择题问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
高考数学中圆锥曲线的经典例子?
1、2015年湖北省高考数学试卷与往年相比,难度有所降低,考生应该可以考出一个理想的高考成绩。高考分数线预计会有所提高。高考试卷的批阅工作在6月15 日左右就要开始了。
2、2015年高考各科答案已经陆续公布,考生可以到各大门户网站或当地的教育考试院官网查询。目前网上有各种版本的高考试题和答案,有些不是官方公布的准确答案,有可能与标准答案有误差。考生要注意鉴别。
3、2015年高考已经结束了,考生应该对照答案预估一下自己的高考分数,然后按照往年的高校录取分数选择欲填报的学校和专业,查询一下这些学校的录取原则。
4、2015年高考成绩及各批次控制分数线预计在6月23日前后公布,考生要到当地官网公布的查询网站查询高考成绩和分数线。填报志愿工作在高考成绩公布后马上开始进行。具体填报志愿的时间教育考试院官网会通知。
2005江西高考数学题及答案
椭圆标准方程典型例题
例1 已知椭圆 的一个焦点为(0,2)求 的值.
分析:把椭圆的方程化为标准方程,由 ,根据关系 可求出 的值.
解:方程变形为 .因为焦点在 轴上,所以 ,解得 .
又 ,所以 , 适合.故 .
例2 已知椭圆的中心在原点,且经过点 , ,求椭圆的标准方程.
分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,
求出参数 和 (或 和 )的值,即可求得椭圆的标准方程.
解:当焦点在 轴上时,设其方程为 .
由椭圆过点 ,知 .又 ,代入得 , ,故椭圆的方程为 .
当焦点在 轴上时,设其方程为 .
由椭圆过点 ,知 .又 ,联立解得 , ,故椭圆的方程为 .
例3 的底边 , 和 两边上中线长之和为30,求此三角形重心 的轨迹和顶点 的轨迹.
分析:(1)由已知可得 ,再利用椭圆定义求解.
(2)由 的轨迹方程 、 坐标的关系,利用代入法求 的轨迹方程.
解: (1)以 所在的直线为 轴, 中点为原点建立直角坐标系.设 点坐标为 ,由 ,知 点的轨迹是以 、 为焦点的椭圆,且除去轴上两点.因 , ,有 ,
故其方程为 .
(2)设 , ,则 . ①
由题意有 代入①,得 的轨迹方程为 ,其轨迹是椭圆(除去 轴上两点).
例4 已知 点在以坐标轴为对称轴的椭圆上,点 到两焦点的距离分别为 和 ,过 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.
解:设两焦点为 、 ,且 , .从椭圆定义知 .即 .
从 知 垂直焦点所在的对称轴,所以在 中, ,
可求出 , ,从而 .
∴所求椭圆方程为 或 .
例5 已知椭圆方程 ,长轴端点为 , ,焦点为 , , 是椭圆上一点, , .求: 的面积(用 、 、 表示).
分析:求面积要结合余弦定理及定义求角 的两邻边,从而利用 求面积.
解:如图,设 ,由椭圆的对称性,不妨设 ,由椭圆的对称性,不妨设 在第一象限.由余弦定理知: ? .①
由椭圆定义知: ②,则 得 .
故 .
例6 已知动圆 过定点 ,且在定圆 的内部与其相内切,求动圆圆心 的轨迹方程.
分析:关键是根据题意,列出点P满足的关系式.
解:如图所示,设动圆 和定圆 内切于点 .动点 到两定点,
即定点 和定圆圆心 距离之和恰好等于定圆半径,
即 .∴点 的轨迹是以 , 为两焦点,
半长轴为4,半短轴长为 的椭圆的方程: .
说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.
例7 已知椭圆 ,(1)求过点 且被 平分的弦所在直线的方程;
(2)求斜率为2的平行弦的中点轨迹方程;
(3)过 引椭圆的割线,求截得的弦的中点的轨迹方程;
(4)椭圆上有两点 、 , 为原点,且有直线 、 斜率满足 ,
求线段 中点 的轨迹方程.
分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.
解:设弦两端点分别为 , ,线段 的中点 ,则
①-②得 .
由题意知 ,则上式两端同除以 ,有 ,
将③④代入得 .⑤
(1)将 , 代入⑤,得 ,故所求直线方程为: . ⑥
将⑥代入椭圆方程 得 , 符合题意, 为所求.
(2)将 代入⑤得所求轨迹方程为: .(椭圆内部分)
(3)将 代入⑤得所求轨迹方程为: .(椭圆内部分)
(4)由①+②得 : , ⑦, 将③④平方并整理得
, ⑧, , ⑨
将⑧⑨代入⑦得: , ⑩
再将 代入⑩式得: , 即 .
此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.
例8 已知椭圆 及直线 .
(1)当 为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为 ,求直线的方程.
解:(1)把直线方程 代入椭圆方程 得 ,
即 . ,解得 .
(2)设直线与椭圆的两个交点的横坐标为 , ,由(1)得 , .
根据弦长公式得 : .解得 .方程为 .
说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.
这里解决直线与椭圆的交点问题,一般考虑判别式 ;解决弦长问题,一般应用弦长公式.
用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.
例9 以椭圆 的焦点为焦点,过直线 上一点 作椭圆,要使所作椭圆的长轴最短,点 应在何处?并求出此时的椭圆方程.
分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.
解:如图所示,椭圆 的焦点为 , .
点 关于直线 的对称点 的坐标为(-9,6),直线 的方程为 .
解方程组 得交点 的坐标为(-5,4).此时 最小.
所求椭圆的长轴: ,∴ ,又 ,
∴ .因此,所求椭圆的方程为 .
例10 已知方程 表示椭圆,求 的取值范围.
解:由 得 ,且 .
∴满足条件的 的取值范围是 ,且 .
说明:本题易出现如下错解:由 得 ,故 的取值范围是 .
出错的原因是没有注意椭圆的标准方程中 这个条件,当 时,并不表示椭圆.
例11 已知 表示焦点在 轴上的椭圆,求 的取值范围.
分析:依据已知条件确定 的三角函数的大小关系.再根据三角函数的单调性,求出 的取值范围.
解:方程可化为 .因为焦点在 轴上,所以 .
因此 且 从而 .
说明:(1)由椭圆的标准方程知 , ,这是容易忽视的地方.
(2)由焦点在 轴上,知 , . (3)求 的取值范围时,应注意题目中的条件 .
例12 求中心在原点,对称轴为坐标轴,且经过 和 两点的椭圆方程.
分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,
可设其方程为 ( , ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.
解:设所求椭圆方程为 ( , ).由 和 两点在椭圆上可得
即 所以 , .故所求的椭圆方程为 .
例13 知圆 ,从这个圆上任意一点 向 轴作垂线段,求线段中点 的轨迹.
分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹.
解:设点 的坐标为 ,点 的坐标为 ,则 , .
因为 在圆 上,所以 .
将 , 代入方程 得 .所以点 的轨迹是一个椭圆 .
说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为 ,
设已知轨迹上的点的坐标为 ,然后根据题目要求,使 , 与 , 建立等式关系,
从而由这些等式关系求出 和 代入已知的轨迹方程,就可以求出关于 , 的方程,
化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.
例14 已知长轴为12,短轴长为6,焦点在 轴上的椭圆,过它对的左焦点 作倾斜解为 的直线交椭圆于 , 两点,求弦 的长.
分析:可以利用弦长公式 求得,
也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.
解:(法1)利用直线与椭圆相交的弦长公式求解.
.因为 , ,所以 .因为焦点在 轴上,
所以椭圆方程为 ,左焦点 ,从而直线方程为 .
由直线方程与椭圆方程联立得: .设 , 为方程两根,所以 , , , 从而 .
(法2)利用椭圆的定义及余弦定理求解.
由题意可知椭圆方程为 ,设 , ,则 , .
在 中, ,即 ;
所以 .同理在 中,用余弦定理得 ,所以 .
(法3)利用焦半径求解.
先根据直线与椭圆联立的方程 求出方程的两根 , ,它们分别是 , 的横坐标.
再根据焦半径 , ,从而求出 .
例15 椭圆 上的点 到焦点 的距离为2, 为 的中点,则 ( 为坐标原点)的值为A.4 B.2 C.8 D.
解:如图所示,设椭圆的另一个焦点为 ,由椭圆第一定义得 ,所以 ,
又因为 为 的中位线,所以 ,故答案为A.
说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于 )的点的轨迹叫做椭圆.
(2)椭圆上的点必定适合椭圆的这一定义,即 ,利用这个等式可以解决椭圆上的点与焦点的有关距离.
例16 已知椭圆 ,试确定 的取值范围,使得对于直线 ,椭圆 上有不同的两点关于该直线对称.
分析:若设椭圆上 , 两点关于直线 对称,则已知条件等价于:(1)直线 ;(2)弦 的中点 在 上.
利用上述条件建立 的不等式即可求得 的取值范围.
解:(法1)设椭圆上 , 两点关于直线 对称,直线 与 交于 点.
∵ 的斜率 ,∴设直线 的方程为 .由方程组 消去 得
①。∴ .于是 , ,
即点 的坐标为 .∵点 在直线 上,∴ .解得 . ②
将式②代入式①得 ③
∵ , 是椭圆上的两点,∴ .解得 .
(法2)同解法1得出 ,∴ ,
,即 点坐标为 .
∵ , 为椭圆上的两点,∴ 点在椭圆的内部,∴ .解得 .
(法3)设 , 是椭圆上关于 对称的两点,直线 与 的交点 的坐标为 .
∵ , 在椭圆上,∴ , .两式相减得 ,
即 .∴ .
又∵直线 ,∴ ,∴ ,即①。
又 点在直线 上,∴ ②。由①,②得 点的坐标为 .以下同解法2.
说明:涉及椭圆上两点 , 关于直线 恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:
(1)利用直线 与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式 ,建立参数方程.
(2)利用弦 的中点 在椭圆内部,满足 ,将 , 利用参数表示,建立参数不等式.
例17 在面积为1的 中, , ,建立适当的坐标系,求出以 、 为焦点且过 点的椭圆方程.
解:以 的中点为原点, 所在直线为 轴建立直角坐标系,设 .
则 ∴ 即 ∴ 得
∴所求椭圆方程为
例18 已知 是直线 被椭圆 所截得的线段的中点,求直线 的方程.
分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去 (或 ),得到关于 (或 )的一元二次方程,再由根与系数的关系,直接求出 , (或 , )的值代入计算即得.
并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.
解:方法一:设所求直线方程为 .代入椭圆方程,整理得
①
设直线与椭圆的交点为 , ,则 、 是①的两根,∴
∵ 为 中点,∴ , .∴所求直线方程为 .
方法二:设直线与椭圆交点 , .∵ 为 中点,∴ , .
又∵ , 在椭圆上,∴ , 两式相减得 ,
即 .∴ .∴直线方程为 .
方法三:设所求直线与椭圆的一个交点为 ,另一个交点 .
∵ 、 在椭圆上,∴ ①。 ②
从而 , 在方程①-②的图形 上,而过 、 的直线只有一条,∴直线方程为 .
说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法.
若已知焦点是 、 的椭圆截直线 所得弦中点的横坐标是4,则如何求椭圆方程?
2005年江西高考数学试卷(理科)
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 则
(A) (B) (C) (D)
2.设复数 若 为实数,则
(A) (B) (C) (D)
3.“ ”是“直线 与圆 相切”的
(A)充分不必要条件 (B)必要不充分条件
(C)充分必要条件 (D)既不充分又不必要条件
4. 的展开式中,含 的正整数次幂的项共有
(A)4项 (B)3项 (C)2项 (D)1项
5.设函数 ,则 为
(A)周期函数,最小正周期为 (B)周期函数,最小正周期为
(C)周期函数,最小正周期为 (D)非周期函数
6.已知向量 ,若 ,则 与 的夹角为
(A) (B) (C) (D)
7.已知函数 的图象如右图所示
(其中 是函数 的导函数).下
面四个图象中 的图象大致是
8.若 ,则
(A) (B) (C) (D)
9.矩形ABCD中, ,沿AC将矩形ABCD折成一个直二面角 ,则四面体ABCD的外接球的体积为
(A) (B) (C) (D)
10.已知实数 满足等式 ,下列五个关系式
① ② ③ ④ ⑤
其中不可能成立的关系式有
(A)1个 (B)2个 (C)3个 (D)4个
11.在 中,O为坐标原点, ,则当 的面积达到最大值时,
(A) (B) (C) (D)
12.将 这 个数平均分成三组,则每组的三个数都成等差数列的概率为
(A) (B) (C) (D)
二.填空题:本大题共的小题,每小题4分,共16分.请把答案填在答题卡上.
13.若函数 是奇函数,则
14.设实数 满足 ,则 的最大值是_____
15.如图,在直三棱柱 中,
分别为 的中点,沿棱柱的表面从
E到F两点的最短路径的长度为______
16.以下四个关于圆锥曲线的命题中
①设A、B为两个定点, 为非零常数,若 ,则点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若 ,则动点P的轨迹为椭圆;
③方程 的两根可分别作为椭圆和双曲线的离心率;
④双曲线 与椭圆 有相同的焦点.
其中真命题的序号为________(写出所有真命题的序号).
三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知函数 为常数),且方程 有两个实根为
(1)求函数 的解析式;
(2)设 ,解关于 的不等式:
18.(本小题满分12分)
已知向量 ,令
是否存在实数 ,使 (其中 是 的导函数)?若存在,则求
出 的值;若不存在,则证明之.
19.(本小题满分12分)
A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢
得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达到9次时,或在此前某人已赢
得所有卡片时游戏终止.设 表示游戏终止时掷硬币的次数.
(1)求 的取值范围;
(2)求 的数学期望
20.(本小题满分12分)
如图,在长方体 中, ,点E在棱AB上移动.
(1)证明: ;
(2)当EAB的中点时,求点E到面 的距离;
(3)AE等于何值时,二面角 的大小为 .
21.(本小题满分12分)
已知数列 的各项都是正数,且满足:
(1)证明
(2)求数列 的通项公式
22.(本小题满分14分)
如图,设抛物线 的焦点为F,动点P
在直线 上运动,过P作抛物线
C的两条切线PA、PB,且与抛物线C分别相切
于A、B两点
(1)求 的重心G的轨迹方程;
(2)证明
2005年普通高等学校招生全国统一考试(江西卷)
理科数学参考答案
一、选择题
1.D 2.A 3.A 4.B 5.B 6.C 7.C 8.C 9.C 10.B 11.D 12.A
二、填空题
13. 14. 15. 16.③④
三、解答题
17.解:(1)将 得
(2)不等式即为
即
①当
②当
③ .
18.解:
19.解:(1)设正面出现的次数为m,反面出现的次数为n,则 ,可得:
(2)
20.解法(一)
(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E
(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1= ,AD1= ,
故
(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,
∴∠DHD1为二面角D1—EC—D的平面角.
设AE=x,则BE=2-x
解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)
(1)
(2)因为E为AB的中点,则E(1,1,0),从而 ,
,设平面ACD1的法向量为 ,则
也即 ,得 ,从而 ,所以点E到平面AD1C的距离为
(3)设平面D1EC的法向量 ,∴
由 令b=1, ∴c=2,a=2-x,
∴
依题意
∴ (不合,舍去), .
∴AE= 时,二面角D1—EC—D的大小为 .
21.解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴ ,命题正确.
2°假设n=k时有
则
而
又
∴ 时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时, ∴ ;
2°假设n=k时有 成立,
令 , 在[0,2]上单调递增,所以由假设
有: 即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项: 所以
,
又bn=-1,所以
22.解:(1)设切点A、B坐标分别为 ,
∴切线AP的方程为:
切线BP的方程为:
解得P点的坐标为:
所以△APB的重心G的坐标为 ,
所以 ,由点P在直线l上运动,从而得到重心G的轨迹方程为:
(2)方法1:因为
由于P点在抛物线外,则
∴
同理有
∴∠AFP=∠PFB.
方法2:①当 所以P点坐标为 ,则P点到直线AF的距离为:
即
所以P点到直线BF的距离为:
所以d1=d2,即得∠AFP=∠PFB.
②当 时,直线AF的方程:
直线BF的方程:
所以P点到直线AF的距离为:
,同理可得到P点到直线BF的距离 ,因此由d1=d2,可得到∠AFP=∠PFB.