您现在的位置是: 首页 > 高考调剂 高考调剂

高考数列真题合集,高考数列真题

tamoadmin 2024-07-25 人已围观

简介1.山东2012高考数学的数列问题2.2022全国新高考Ⅰ卷(数学)真题及答案解析3.一道高中数学数列题证明:两边同时加n得:An+n=2A(n-1)-2+2n 即An+n=2A(n-1)+2(n-1) 所以得(An+n)/[A(n-1)+(n-1)]=2

1.山东2012高考数学的数列问题

2.2022全国新高考Ⅰ卷(数学)真题及答案解析

3.一道高中数学数列题

高考数列真题合集,高考数列真题

证明:两边同时加n得:An+n=2A(n-1)-2+2n

即An+n=2A(n-1)+2(n-1)

所以得(An+n)/[A(n-1)+(n-1)]=2

所以{An+n}是以2为首项,2为公比的等比数列

(1)an+n=2的n次幂

an=2的n次幂-n

(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)

=2(2的n次-1)-1/2·n(1+n)

山东2012高考数学的数列问题

前60项有30个奇数项和30项偶数项。

a2-a1=1

a3+a2=3

所以a3+a1=2

同理

a7+a5=2

a11+a9=2

……

a59+a57=2

奇数项和是15×2=30

a3+a2=3

a4-a3=5

所以a4+a2=8

a7+a6=13

a8-a7=15

所以 a8+a6=24

……

a60+a58=8+16×14=232

所以偶数项和=首项为8,公差为16的等差数列前15项的和=1800

所以S60=1830

2022全国新高考Ⅰ卷(数学)真题及答案解析

对任意m∈N*,将数列{an}中不大于72m的项的个数记为bm,求数列{bm}的前m项和Sm。

m=1, {an}中不大于72*1=72的项的个数记为b1,

m=2, {an}中不大于72*2=144的项的个数记为b2,

... ...

这样,就得到了数列{bm}

一道高中数学数列题

高考结束后,考生们相互之间都会对答案、估分,所以知道有本省的高考试题和答案非常重要,下面我为大家带来2022全国新高考Ⅰ卷(数学)真题及答案解析,希望对您有帮助,欢迎参考阅读!

2022全国新高考Ⅰ卷数学真题

2022全国新高考Ⅰ卷数学真题答案解析

高考数学冲刺备考技巧

对大多数的考生而言,决定其成败的往往是基础题和中等难度的问题,这些试题约占整张试卷的五分之四左右。因此,考生在复习时,一定要先保证基础题和中等难度的试题得分,不要一味地追求难题。在解题 方法 上,一些典型方法,尤其是通性通法,要灵活掌握。对于那些解题技巧并不常见,而且比较偏、怪的试题,则不必花费太多的时间。

对于近两年的高考真题,可以模仿高考的考试时间和考试要求,感受高考的氛围,训练答题的时间和考试状态。同时,在模拟过程中,也要注重答题规范性的训练,尽量避免因为字迹、涂卡等因素影响考试成绩。

高考数学必考知识点

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py

直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h

正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h

正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2

圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s_h 圆柱体 V=pi_r2h

2022全国新高考Ⅰ卷(数学)真题及答案解析相关 文章 :

★ 2022高考全国乙卷试题及答案(理科)

★ 2022年全国新高考Ⅰ卷英语试题及答案最新

★ 2022全国新高考Ⅱ卷文科数学试题及答案解析

★ 2022年全国新高考II卷数学真题及答案

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022高考甲卷数学真题试卷及答案

★ 2022高考全国甲卷数学试题及答案

★ 2022全国新高考Ⅰ卷英语试题及答案解析

★ 2022全国新高考I卷语文试题及答案

解:1、首先求an的表达式:

带入n=1,2,3,4,5,6,7,可得a2=3/4,a3=2/3,a4=5/8,a5=3/5,a6=7/12,a8=4/7.

可以发现奇数项的分子是首项为1公差为1的等差数列,分母是首项为1公差为2的等差数列,设k为正整数,则a(2k-1)=k/[1+(k-1)*2]=(1/2)*[1+1/(2k-1)] ----这个变形应该化解没问题吧?

同理发现偶数项的分子是首项为3公差为2的等差数列,分母是首项为4公差为4的等差数列,设k为正整数,则a(2k)=[3+(k-1)*2]/[4+(k-1)*4]=(1/2)*[1+1/(2k)] ----同样的变形化解。

综合起来就是a(n)=(1/2)*(1+1/n)。

当然这个式子是由猜想得来的,以下还要用数学归纳法证明之!(此处略,如有需要欢迎追问。)

2、接下来求cn的表达式:

bn=2/(2an-1)=2/[2*(1/2)*(1+1/n)-1]=2/n。

cn=(根号2)^bn=2^(bn/2)=2^(1/n)

3、以下用反证法证明之!

证明:显然cn是一个递减数列(如有疑问欢迎追问)。所以设数列cn中存在ci、cj、ck三项可以使得ci、cj、ck构成等差数列,其中i、j、k为大于等于1的正整数,且i<j<k。

则有2cj=ci+ck。

即:2*2^(1/j)=2^(1/i)+2^(1/k),亦即:2^(1+1/j)=2^(1/i)+2^(1/k),设p=2^(1+1/j)

所以:p=p*[2^(1/i-1-1/j)+2^(1/k-1-1/j)] -------这个变形没问题吧?

所以2^(1/i-1-1/j)+2^(1/k-1-1/j)]=1

令A=2^(1/i-1-1/j),B=2^(1/k-1-1/j)]。

若i>1,则k>1,j>1,则1/i-1-1/j<-1/2,1/k-1-1/j<-1/2,则A+B>1/1.414+1/1.414>1.

若i=1,(这个很复杂,还要对j和k继续细分,其中有些情况得出来A+B>1,有些得出来是小于1,但是绝对不会等于1).

所以得出矛盾,2^(1/i-1-1/j)+2^(1/k-1-1/j)]=1是不成立的,所以元命题成立!

另:这道题可以列入高考题目范围,没有什么地方超标了,涉及到的知识有数列、函数单调性、数学归纳法的证明,反证法的用法等,综合性较强,不过最后一问难度很大,需要证明的第三问都是些经典类型的证明! 我尝试过用基本不等式缩放,但是缩放证明出来要成立的话有一个前提是i、j、k要成等差数列才可以,所以这个方法行不通···。本题最后一问欢迎高手继续回答!

文章标签: # 高考 # 答案 # 数学