您现在的位置是: 首页 > 高考调剂 高考调剂

2017辽宁高考数学真题,2017辽宁数学中考题及答案

tamoadmin 2024-08-02 人已围观

简介1.17高考哪里数学卷最难2.2017高考数学史上最难3.17年高考数学是怎么了4.2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。参考答案为-16,18.只取第一象限点了17高考哪里数学卷最难高中数学合集百度网盘下载链接:s://p

1.17高考哪里数学卷最难

2.2017高考数学史上最难

3.17年高考数学是怎么了

4.2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?

2017辽宁高考数学真题,2017辽宁数学中考题及答案

3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。

参考答案为-16,18.只取第一象限点了

17高考哪里数学卷最难

高中数学合集百度网盘下载

链接:s://pan.baidu/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、、各大名师网校合集。

2017高考数学史上最难

top 1

浙江卷

点评

今年的浙江的数学试题选择题难度不大,填空题继续用多空设问的形式,在其中穿插数学文化知识等考点,紧扣考纲,其中17题考查函数与绝对值问题,有一定难度。22题还是以数列作为压轴题,分布设问,让不同程度的学生都能拿分,有较好的区分度。与去年相比,题型变化不大,还是要注重通法通性的训练。

top 2

江苏卷

点评

今年的江苏的数学试题仍秉承“原创为主,试题紧扣教材,学生做起来有一种亲近感,具有“上手容易”的特点,有利于考生发挥真实的水平。部分题目综合性稍大了一些,注重对数学思想方法的考查,但解决问题的思路和方法还是常见的。

top 3

上海卷

点评

上海卷今年数学试卷不分文理,考查学生数学素养及应用能力成为试卷的亮点,体现“教考一致”的导向作用。上海卷压轴题目较难,解析几何题目计算量很大,增加了学生得分难度;21题函数大题考察函数性质与充要条件,难度依然较大,要求要求思维能力。

top 4

全国Ⅱ卷

使用省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆、海南

点评:

今年考试的出题风格与之前几年相比变化不大,既注重考查学生对基础知识的掌握程度,也加入了一些创新的元素,以此来检验学生能否灵活运用公式定理来解决实际问题。试卷中一些题目题干的叙述方式比较新颖,这也突出体现了考纲中对于“数学文化”的考查要求。

top 5

全国Ⅰ卷

使用省份:福建、河南、河北、山西、江西、湖北、湖南、广东、安徽

点评:

2017年全国Ⅰ卷从总体上来看具有如下几个特点:选择题题目难度明显降低,解答题的灵活性较强、创新程度比较高,整张试卷计算量较大。这种题目风格也比较符合全国卷一贯的特点——既重视对基础知识的考查又会加入一些创新元素。同时,提高对考生计算能力的要求是近年来全国卷较为明显的趋势。

17年高考数学是怎么了

浙江最难。2017年高考数学难度排行榜:

1、浙江卷,难度系数5颗星。

2、江苏卷,难度系数4颗星。

3、上海卷,难度系数四颗星。

4、全国卷2,难度系数三颗星。

5、全国卷1,难度系数3颗星。

2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。

体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。

高考数学必考知识点归纳如下

1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

2、概率和统计,这部分和生活联系比较大,属应用题。

3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

由前面推导可知,即由题设可知根的判别式=16(4K^2-m^2+1)>0,后面又求得k=-(m+1)/2

这样将k代入进去,4K^2-m^2+1>0

4ⅹ[-(m+1)/2]^2-m^2+1>0

化简得2m+2>0得m>-1

所以当且仅当m>-1时,根的判别式﹥0就是这样得来的。

文章标签: # 数学 # 10px # 0px