您现在的位置是: 首页 > 教育分析 教育分析

高考数学预测题,高考数学预测题难吗

tamoadmin 2024-05-26 人已围观

简介1.天祥,天星,王后雄,哪个押题卷好?2.2022年新高考2卷数学试题及答案3.北京高考数学难吗2023年4.急求以下高三奥赛数学题答案,要求有步骤!!!!2023年山西高考数学总体来说预测今年难度适中。1、2023山西高考理科数学试题难度:山西高考理科数学试题的难度一直在以一个相对稳定的趋势在发展,可以称的上是难度适中。山西高考理科数学试题创新题型占比越来越高,对山西考生基础数学知识的理解与运用

1.天祥,天星,王后雄,哪个押题卷好?

2.2022年新高考2卷数学试题及答案

3.北京高考数学难吗2023年

4.急求以下高三奥赛数学题答案,要求有步骤!!!!

高考数学预测题,高考数学预测题难吗

2023年山西高考数学总体来说预测今年难度适中。

1、2023山西高考理科数学试题难度:

山西高考理科数学试题的难度一直在以一个相对稳定的趋势在发展,可以称的上是难度适中。山西高考理科数学试题创新题型占比越来越高,对山西考生基础数学知识的理解与运用要求越来越高,这种变化也符合当前考纲。

2、2023山西高考文科数学试题难度:

2023年山西高考文科数学试卷难度较为适中,山西高考文科数学试题是全国乙卷。山西高考文科数学试题在知识层面重点考查学生的逻辑思维、数学计算以及利用数学模型解决实际问题的能力。

3、2023山西高考语文试题难度:

山西高考语文试卷是由教育部考试中心组织命制的、适用于全国大部分省区的高考试题,目的在于保证人才选拔的公正性。从近几年的全国乙卷来看,重点考查对知识点的灵活运用能力,山西高考语文试题难度上和其他用乙卷省市是一致的。

高考数学考试技巧:

1、先易后难、先熟后生:

先做简单题、熟悉的题,再做综合题、难题。应根据实际,果断跳过啃不动的题目,从易到难,可以增强信心。

2、先小后大:

小题一般信息量少、运算量小,易于把握,不要轻易放过,应争取在做大题之前尽快解决,为解决大题赢得时间。

3、先局部后整体:

对一个疑难问题,确实啃不动时,一个明智的策略是:将它划分为一个个子问题或一系列步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。

天祥,天星,王后雄,哪个押题卷好?

2011年普通高等等学校招生全国统一模拟考试(湖南卷)

数学(理工农医类)

一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若 a<0, >1,则 (D)

A.a>1,b>0 B.a>1,b<0 C. 0<a<1, b>0 D. 0<a<1, b<0

2.对于非0向时a,b,“a//b”的确良 (A)

A.充分不必要条件 B. 必要不充分条件

C.充分必要条件 D. 既不充分也不必要条件

3.将函数y=sinx的图象向左平移 0 <2 的单位后,得到函数y=sin 的图象,则 等于 (D)

A. B. C. D.

4.如图1,当参数 时,连续函数 的图像分别对应曲线 和 , 则 [ B]

A B

C D

5.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 w.w.w.k.s.5.u.c.o.m [ C]

A 85 B 56 C 49 D 28

6. 已知D是由不等式组 ,所确定的平面区域,则圆 在区域D内

的弧长为 [ B]

A B C D

7.正方体ABCD— 的棱上到异面直线AB,C 的距离相等的点的个数为(C)

A.2 B.3 C. 4 D. 5 w.w.w.k.s.5.u.c.o.m

8.设函数 在( ,+ )内有定义。对于给定的正数K,定义函数

取函数 = 。若对任意的 ,恒有 = ,则w.w.w.k.s.5.u.c.o.m

A.K的最大值为2 B. K的最小值为2

C.K的最大值为1 D. K的最小值为1 D

二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上

9.某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__

10.在 的展开式中, 的系数为___7__(用数字作答)

11、若x∈(0, )则2tanx+tan( -x)的最小值为2 . w.w.w.k.s.5.u.c.o.m

12、已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为

13、一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为 ,则总体中的个数数位 50 。

14、在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则w.w.w.k.s.5.u.c.o.m

(1)球心到平面ABC的距离为 12 ;

(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为 3

15、将正⊿ABC分割成 ( ≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,…,f(n)= (n+1)(n+2)

三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)

在 ,已知 ,求角A,B,C的大小。

解:设

由 得 ,所以

又 因此 w.w.w.k.s.5.u.c.o.m

由 得 ,于是

所以 , ,因此

,既

由A= 知 ,所以 , ,从而

或 ,既 或 故

或 。

17.(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的. 、 、 ,现在3名工人独立地从中任选一个项目参与建设。w.w.w.k.s.5.u.c.o.m

(I)求他们选择的项目所属类别互不相同的概率;

(II)记 为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件 , , ,i=1,2,3.由题意知 相互独立, 相互独立, 相互独立, , , (i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P( )=,P( )= ,P( )=

(1) 他们选择的项目所属类别互不相同的概率

P=3!P( )=6P( )P( )P( )=6 =

(2) 解法1 设3名工人中选择的项目属于民生工程的人数为 ,由己已知, -B(3, ),且 =3 。

所以P( =0)=P( =3)= = ,

P( =1)=P( =2)= = w.w.w.k.s.5.u.c.o.m

P( =2)=P( =1)= =

P( =3)=P( =0)= =

故 的分布是

0 1 2 3

P

的数学期望E =0 +1 +2 +3 =2

解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件 ,

i=1,2,3 ,由此已知, ?D, 相互独立,且

P( )-( , )= P( )+P( )= + =

所以 -- ,既 , w.w.w.k.s.5.u.c.o.m

故 的分布列是

1 2 3

18.(本小题满分12分)

如图4,在正三棱柱 中,

D是 的中点,点E在 上,且 。

(I) 证明平面 平面

(II) 求直线 和平面 所成角的正弦值。w.w.w.k.s.5.u.c.o.m

解 (I) 如图所示,由正三棱柱 的性质知 平面

又DE 平面A B C ,所以DE AA .

而DE AE。AA AE=A 所以DE 平面AC C A ,又DE 平面ADE,故平面ADE 平面AC C A 。

(2)解法1 如图所示,设F使AB的中点,连接DF、DC、CF,由正三棱柱ABC- A B C 的性质及D是A B的中点知A B C D, A B DF w.w.w.k.s.5.u.c.o.m

又C D DF=D,所以A B 平面C DF,

而AB∥A B,所以

AB 平面C DF,又AB 平面ABC,故

平面AB C 平面C DF。

过点D做DH垂直C F于点H,则DH 平面AB C 。w.w.w.k.s.5.u.c.o.m

连接AH,则 HAD是AD和平面ABC 所成的角。

由已知AB= A A ,不妨设A A = ,则AB=2,DF= ,D C = ,

C F= ,AD= = ,DH= = — ,

所以 sin HAD= = 。

即直线AD和平面AB C 所成角的正弦值为 。

解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设

A A = ,则AB=2,相关各点的坐标分别是

A(0,-1,0), B( ,0,0), C (0,1, ), D( ,- , )。

易知 =( ,1,0), =(0,2, ), =( ,- , )w.w.w.k.s.5.u.c.o.m

设平面ABC 的法向量为n=(x,y,z),则有

解得x=- y, z=- ,

故可取n=(1,- , )。

所以, (n? )= = = 。

由此即知,直线AD和平面AB C 所成角的正弦值为 。

19.(本小题满分13分)

某地建一座桥,两端的桥墩已建好,这两墩相距 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为 米的相邻两墩之间的桥面工程费用为 万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为 万元。

(Ⅰ)试写出 关于 的函数关系式;

(Ⅱ)当 =640米时,需新建多少个桥墩才能使 最小?

解 (Ⅰ)设需要新建 个桥墩,

所以

(Ⅱ) 由(Ⅰ)知,

令 ,得 ,所以 =64

当0< <64时 <0, 在区间(0,64)内为减函数;w.w.w.k.s.5.u.c.o.m

当 时, >0. 在区间(64,640)内为增函数,

所以 在 =64处取得最小值,此时,

故需新建9个桥墩才能使 最小。

20(本小题满分13分)

在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和w.w.w.k.s.5.u.c.o.m

(Ⅰ)求点P的轨迹C;

(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。

解(Ⅰ)设点P的坐标为(x,y),则 3︳x-2︳

由题设

当x>2时,由①得

化简得

当 时 由①得

化简得

故点P的轨迹C是椭圆 在直线x=2的右侧部分与抛物线 在直线x=2的左侧部分(包括它与直线x=2的交点)所组成的曲线,参见图1

(Ⅱ)如图2所示,易知直线x=2与 , 的交点都是A(2, ),

B(2, ),直线AF,BF的斜率分别为 = , = .

当点P在 上时,由②知

. ④

当点P在 上时,由③知w.w.w.k.s.5.u.c.o.m

若直线l的斜率k存在,则直线l的方程为

(i)当k≤ ,或k≥ ,即k≤-2 时,直线I与轨迹C的两个交点M( , ),N( , )都在C 上,此时由④知

∣MF∣= 6 - ∣NF∣= 6 - w.w.w.k.s.5.u.c.o.m

从而∣MN∣= ∣MF∣+ ∣NF∣= (6 - )+ (6 - )=12 - ( + )

由 得 则 , 是这个方程的两根,所以 + = *∣MN∣=12 - ( + )=12 -

因为当

w.w.w.k.s.5.u.c.o.m

当且仅当 时,等号成立。

(2)当 时,直线L与轨迹C的两个交点 分别在 上,不妨设点 在 上,点 上,则④⑤知,

设直线AF与椭圆 的另一交点为E

所以 。而点A,E都在 上,且

有(1)知 w.w.w.k.s.5.u.c.o.m

若直线 的斜率不存在,则 = =3,此时

综上所述,线段MN长度的最大值为

21.(本小题满分13分)

对于数列 若存在常数M>0,对任意的 ,恒有

w.w.w.k.s.5.u.c.o.m

则称数列 为B-数列

(1) 首项为1,公比为 的等比数列是否为B-数列?请说明理由;

请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题

判断所给命题的真假,并证明你的结论;

(2) 设 是数列 的前 项和,给出下列两组论断;

A组:①数列 是B-数列 ②数列 不是B-数列

B组:③数列 是B-数列 ④数列 不是B-数列

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。

判断所给命题的真假,并证明你的结论;

(3) 若数列 都是 数列,证明:数列 也是 数列。

解(1)设满足题设的等比数列为 ,则 ,于是

因此| - |+| - |+…+| - |=

因为 所以 即w.w.w.k.s.5.u.c.o.m

故首项为1,公比为 的等比数列是B-数列。

(2)命题1:若数列 是B-数列,则数列 是B-数列

次命题为假命题。

事实上,设 ,易知数列 是B-数列,但

由 的任意性知,数列 是B-数列此命题为。

命题2:若数列 是B-数列,则数列 是B-数列

此命题为真命题

事实上,因为数列 是B-数列,所以存在正数M,对任意的 有

w.w.w.k.s.5.u.c.o.m

即 。于是

所以数列 是B-数列。

(III)若数列 { }是 数列,则存在正数 ,对任意的 有

注意到

同理: w.w.w.k.s.5.u.c.o.m

记 ,则有

因此

+

故数列 是 数列w.w.w.k.s.5.u.c.o.m

2022年新高考2卷数学试题及答案

这是王后雄对他们自己那套押题卷做的介绍说明,你可以参考着看一下。

这套试卷是用做高考最后冲刺的,分语文、数学、英语、理综/文综四科,一科是三套试卷。

你也可以去书店看看实际的试卷内容,再进行选择!

北京高考数学难吗2023年

普通高等学校招生全国统一考试,简称“高考”,是合格的高中 毕业 生或具有同等学历的考生参加的全国统一选拔性考试。下面是我为大家收集的关于2022年新高考2卷数学试题及答案。希望可以帮助大家。

新高考二卷数学试卷

新高考二卷数学答案

家长在填报志愿中的重要作用

志愿填报对于高考学子的重要性而言不啻于第二场高考。家长们无疑希望在志愿填报上能发挥更有效的作用,多一些把握,少一些风险,多一份希望,少一份遗憾。在既往的经历中,总有一些家长使用了道听途说的信息,加上主观臆断的决策,违背了高考的“游戏规则”,酿成了诸多遗憾。由此引发我们的思考,家长在志愿填报过程中究竟应该扮演什么角色,发挥什么功能?

我们以为,志愿填报是一组矛盾的解析过程。这一组矛盾的三个要素高校、考生、政府政策可以用一个拉丁字母Π来表示。上面的一横表示政府政策,左边的一竖表示高校,右边的一竖表示考生。我国的录取体制是政府制定和解释政策,高校和考生按照既定政策双向选择,政府处于控制监督地位,高校和考生处于对等地位。通常认为,考生总是处于弱者地位,这是从信息获取角度看的。如果考生能够清醒的认识自己,深入了解高校,全面地掌握政策,就能在志愿填报中游刃有余,使自己处于有利地位,解析出一组优美的答案。因此,家长在志愿填报中应该扮演的信息员角色,它的功能应是收集(挖掘)信息、整理(过滤)信息、分析(综合)信息。在此基础上与孩子共同拟定志愿方案。这样的方案将会最大限度地趋向科学合理,避免盲目和失误,进而争取一个成功的结果。下面,向家长们提供一些高考要素的基本信息,信息分析 方法 及权衡策略。

一、我国高校的大体分类

从宏观上说,我国的约1000所高等院校大体分为六个层次。其中国家重点支持的列入“985”工程的10所高校——北大、清华、人大、复旦、上交大、南大、浙大、西交大、中科大、哈工大;第二批获得支持的国内名校——北京师范大学、武汉大学、中山大学、南开大学、同济大学、东南大学等;个省列为重点批次录取的大学;个省普通批次录取的高校(民办本科位于本层次稍后);普通专科学校;民办专科学校。由于各省录取批次的不同,以及社会认可度的差异,此种分类仅具有参考价值。考生应该针对自己的状况,实事求是地为自己定位。由于北大、清华在考生心目中的地位更为特殊,达到该两校录取线的考生一般只占全省考生的0.5%。报考者必须全科优异,绝无弱项,通常都有特长加分,心理素质非常稳定。上述分类均以学校为单位,不涉及校内各专业的差别,而专业差别有时也是比较大的。在高校较为集中的省份,如果我们将考生按 文化 成绩分为优异生(占全省考生的2%),优秀生(向上累计占全省考生的10%),优良生(向上累计占全省考生的20%),良好生(向上累计占全省考生的35%),中等生(向上累计占全省考生的50%),达标生(向上累计占全省考生的65%)的话,这六类考生分别对应于上述六类学校。

值得指出的是,有一些单科性的学校如外语类的北京外国语大学、上海外国语大学,经济类的中国 财经 大学、上海财经大学,电子类的西安电子科技大学、成都电子科技大学,农水类的中国农业大学、南京农业大学、海河大学等办学都很有特色,师资力量也很强,它们的强势学科在国内各列前茅,录取分数却不算很高,值得选报。

高等学校是按专业培养, 教育 部给高等学校的本科专业划分了四个层次,分别是学士学位授予点、硕士学位授予点、博士学位授予点、国家重点学科。这个等级基本反映了各专业的师资力量、教学仪器设备、人才培养质量、科研成果等项要素。建有国家级重点实验室的重点学科,具有更强的科研实力,博士后科研流动站是由博士点提出申请建立,并非一个独立的层次。

高等学校的投档线反映了当年本地区考生报考该校的难易程度。对于招生量不太大的院校,投档线可能会有较大的起伏,即使国内公认的名牌院校也不能幸免。所以分析高校投档线宜采用最近三年的平均值,如能以投档线与同批分数控制线的差额作为分析对象,将更加简洁,一目了然。

根据高考改革的宗旨,今年教育部继续给一些信誉较好的高校自主招生的权力。实行自主招生的高校,有权制定政策,对有培养前途的学生给予照顾录取。照顾的额度最低可以降到同批 分数线 。照顾的对象有严格的入围条件和审核程序。一般说来三类人有望入选,即平时成绩一贯优秀的;在文艺、体育、学科方面有明显特长的;思想道德品质上有良好表现如见义勇为的。符合上述条件者可以事先与高校联系,取得认可。受到检举被查实者,将被取消资格。

二、重新认识自己的孩子

大约有一半的家长对自己的孩子认识的不够准确,其中多数评价过于乐观。如果家长仅仅凭着孩子的陈述和班主任的一般介绍,而未对本班、本校的整体情况作了解,就可能陷入盲目乐观的境地。因为孩子的汇报总是隐恶扬善的,班主任的话总是鼓励性和向前看的。要在三个方面认清自己的孩子包括:第一认清孩子的兴趣和专长,以确定孩子的职业倾向;第二是认清孩子真实的应考实力,以确定报考学校的层次和类别;第三是认清孩子的生活自理能力及身体心理条件,以确定学校的地理位置和学校性质。

教育部考试中心曾对我国的人与职业相互适应的理论作过试验,提出人与职业、专业相适应的七种类型。即:

艺术型(适合的工作有作曲、服装设计、写作)。

经营型(适合从事营销、经营管理、法律事务)。

事务型(适合做秘书、银行柜员、资料管理员等)。

研究型(适合做数据统计分析师、大学教学科研人员)。

自然型(适合从事农产品开发、医疗、矿产勘测等工作)。

技术型(适合担任机械师、驾驶员、工程技术人员)。

社会型(适合担任中小学教师、社区工作者、心理咨询人员、导游等)。

在志愿填报中要充分考虑到孩子的兴趣、 爱好 和性格,毕竟专业选择与从事的职业是紧密相关的。由于年龄与 经验 ,让考生对自己的应考实力进行评价会很难,家长需要掌握的这些评价因素:

1.孩子在学校的真实名次,这种名次不能以最佳发挥的一次来代替,要以平均值加权计算(越接近高考难度的权重越大);

2.本校在全省中学的档次,上几个年度本校高考分数分段人数;

3.孩子在学科上的强项和弱项;

4.孩子的兴趣与志向;

5.如果是考后填志愿,再估计一下孩子的分数。这种分数不能当真,错估的比例不小,势力越强的考生估分越准确;

6.孩子的生活自理能力,心理承受能力。

根据1和2,家长可以估计出孩子在全省的相对名词,从而作选报学校定位;根据3和4,可以决定专业方向,是否服从分配。根据5,家长和孩子复核自己所做出的选择,审查有多少偏差。根据6,决定就读学校的地理位置和学校性质。

三、全面地掌握政策

家长充分熟悉高考政策,可以使志愿填报更客观更准确。需要掌握的政策有:体检标准、志愿填报时间、录取批次、落榜生的安排 措施 、自主招生学校的录取政策、录取时的专业级差、高校调整专业的政策、贫困生的帮扶措施、往届生的政策等。

从2003年起,全国统一的体检标准由刚变柔,即由原先的严格规定变为由高校参考的标准。这一改变适应了我国高等教育由精英教育向大众教育转化的趋势,增加了某些身体条件存在缺陷的考生被录取的机会。高校则根据国家标准,研究各专业的就业特点和身体要求,每年会在考前向社会公布本校的体检要求。由于各校的专业设置与培养目标不同,必然产生不同的体检标准,必要时可以信询或面询。当前考生体检问题最多的项目是视力、色盲(色弱)、肝功能异常。通常视力校正超过800度,色盲和转氨酶高的学生容易被拒收,这类学生降档投考层次较低的学校被录取的可能性就会高一些。

录取批次的顺序很重要。聪明的考生往往会避开上一批次不理想的学校,转而取在心仪的学校;而另一些人则可能相反,落在不想去的学校(专业)而一筹莫展。

高分落榜是很痛心的事情。虽然各省考试机构都在想方设法减少这种情况,许多省份都想方法减少之。但如果考生能事先了解落榜政策,就不会临时手忙脚乱。

自主招生学校的优惠录取政策各不相同,家长和考生不必全了解,只需对感兴趣的学校重点了解,各校的网站都有此类政策公示,理解模糊的一定要打听清楚,以免误解造成悔恨。

录取时的专业级别也很重要,它直接牵涉到专业的安排。级差大的第一专业志愿就显得特别重要,一般高校的专业级差大约是1~5分。考分中等又想避开冷门专业,可以选择专业级差大的学校中不太热门的专业。

四、学科大类的选择

当孩子并没有明显的学科偏好和职业倾向时,如何选科就容易困扰家长。我国高校的培养目标除少数体育、艺术类别外,主要分为文理工农医管几大类,它们在高等学校大多有明确的界定。为了便于高考录取,各省都将农医管等大类分别纳入文科或理工科内。但是一些应用科学、社会科学在理工和文理方面有交融的趋势。在实施“大综合”考试的省、市,已经出现不平衡现象,即高分段文科生少,中低分段理科生少。层次较高的学校文科生源大量短缺造成专业人数失恒,而中低层次的学校又大量短缺理工类生源。因此,如果成绩较好的学生填报文科,而成绩较平的学生填报理科录取的可能就会大一些。从社会需求上说,我国正处于经济高速发展时期,高新技术人才严重缺乏。与之相应的理工科人才培养显得更为迫切。而以研究为主的基础文科和某些应用文科则由于社会发展程度的制约和近几年的大量扩招导致供大于求,所以有些文科生抱怨找不到理想的工作。在理工科的选择方面,由于理科更多地面向教学、科研部门,工科更多的面向生产实践部门,若考虑尽快就业,则选择工科;若拟进一步深造,做研究,则可选理科。由于现代科技知识的更新很快,工科院校也在加大研究型教学力度,以培养更高层次人才,故工科院校中偏理的专业与理科有相似的特点。

五、报考

1.贫困生的报考

家庭贫困的学生填报志愿时需要注意以下几点:

贫困是过去的事,上大学是摆脱贫困的阳光大道。要丢掉思想包袱,坦然面对现实,争取“文化致富”;

大学不是义务教育,上学交费是学生和家长应尽的义务,要想方设法筹集上学费用;

政府、社会和大学为贫困生准备了许多帮扶措施,2002年开始实施的国家奖学金,可奖励受助学生每年6000元,并免除全年学费。社会上也有许多捐资助学款用于奖励和扶助大学生。贫困生只要勤奋学习,就有希望受到资助。

国家助学贷款是助学主 渠道 。发放助学贷款的商业银行要求学生勤奋学习,讲究信用。申请贷款的学生要准备好身份证和经济困难证明。由于银行对欠贷不还现象不能容忍,2003年已经发生学校被停贷事件,有些省份开始实行生源地贷款办法。

有些部门、有些媒体、有些学校出台了帮扶贫困生的措施,我们不要理解为不缴学费也能上学。据估计我国在校贫困大学生约有二百万人(不包含研究生),完全解决他们的学习、生活费用大约需要每年二百亿元。又据教育部统计,我国2002年资助的大学生费用约为70亿元,其中奖学金26.3亿元中,至多20%发给了贫困生,因此实际资助困难大学生的金额约为50亿元(其中国家贷款20亿员应由学生偿还),缺口达到75%。

有一些减免学费或获取资助的途径,报考军事院校(部队待遇),报考国防生(奖学金5000元/年),报考面向西部地区(西藏)和艰苦行业的定向生(定向单位资助)。贫困家庭可以优选之。

2.特长生的报考

某些在艺术、体育、学科和创新能力方面具有特殊才能的学生在他们的特长方面的素质上明显高于普通学生,受到高等学校的垂青,这是他们多年辛苦磨练的成果。需要注意的是,高等学校根据本校的传统特色,只需要一部分类和一定量的特长生,并不是来着不拒。某些省份为特长生源规定了很低的准入线,这条准入线不是高校的提档线,各高校都有他自己的提档线。特长生应在填报志愿前与高校洽商报考事宜,获准后方能报考。招生人员的承诺须以书面为准,任何个人的允诺均无法律效力。

3.残疾生的报考

从2003年起国家教育部门将刚性的体检标准解释为由高校参考执行的参考标准,意在放宽残疾生的入学限制。各高校都在以专业为单位,研究放宽标准的可能性。鉴于我过高校资源(尤其是优质资源)的紧缺,同等条件下各高校当然对身体健康的考生优先录取。身体健康方面有缺陷的考生要掌握以下四条原则:

处于传染期的传染病患者应主动放弃报考,安心养病。

近视超过800度、色盲、色弱患者应避免体检标准中限考的专业。

肢体残疾或生活不能自理者要主动降低求学层次,以高分优势换取身体方面的劣势。

尽量在志愿填报前向有关高校了解情况,了解高校意向,增加 保险 系数。

4.往届生的报考

虽然近几年高考录取率稳步提高,但考生对名校和热门专业的追求趋甚。牵强服从的学子宁愿选择复读,也不愿俯就。国家对往届生并不歧视,但也不会鼓励这种现象的发生,因为日见减低的高校报到率已经严重影响了高教资源的合理利用。在过内高校,往届生的录取往往是“同等滞后”,因为他们的复习深化时间比应届生多得多。根据以上分析,往届生填报志愿不能满打满算,宜适当减低理想值,以求一次中的。

2022年新高考2卷数学试题及答案相关 文章 :

★ 2022全国乙卷高考数学(理科)试题及答案

★ 2022北京高考数学(文科)试题及答案

★ 2022年新高考全国二卷物理试卷及答案解析

★ 2022新高考数学Ⅰ卷试卷及参考答案

★ 2022年高考全国乙卷(理科)数学科目题目与答案解析

★ 2022全国乙卷理科数学真题及答案解析

★ 2022年全国高考北京卷数学科目考试真题

★ 2022年高考数学卷真题及答案解析(全国新高考1卷)

★ 新高考全国一卷2022年数学试卷及答案解析

★ 2022高考全国乙卷试题及答案(理科)

急求以下高三奥赛数学题答案,要求有步骤!!!!

2023年北京高考数学不难。

2023年北京高考数学使用的是北京卷,总体来说预测今年难度适中,没有偏题怪题,利于学生正常发挥。试题从素材选取、试题设计等方面综合把控难度,使其与学生总体作答能力水平相当,让学生都能发挥出应有水平。

北京高考数学卷考察内容:

试题突出对理性思维和关键能力的考查,通过设计真实问题情境,关注我国科学防疫的成果,体现数学文化,贯彻全面育人的要求。试题考查了考生获取新知识的能力和对新概念、新问题的理解探究能力,体现了对数学阅读与理解能力的考查。

北京高考数学卷题型特点:

举例问题灵活开放,考察考生想象能力,有多组正确答案,有多种解题方案可供选择;结构努力昂问题适度开放,考察学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学。

2023年北京高考的特点:

1、改革创新

随着教育改革的推进,2023年北京高考将继续呈现出更多的改革创新特点。首先,考试科目和方式可能会出现变化,突出素质教育和综合能力的评价。其次,可能会引入更多的开放性题目和实践操作题,考察学生的思维能力和实践应用能力。

2、信息技术的应用

2023年北京高考将进一步加大对信息技术的应用。随着人工智能和大数据技术的快速发展,考试监控与防作弊的手段将会持续升级,用于更有效地保障考试的公平性和安全性。此外,电子试卷和在线评阅等技术也有望逐步应用,提高试卷的准确性和评分的客观性。

3、注重个性化评价

2023年的北京高考将更加注重对学生个性化特点的评价。除了传统的笔试科目,可能会进一步拓展考查方式,如面试、实践操作、口语表达等。通过多样化的评价方式,更全面地了解学生的综合素养和潜能,为他们提供更适合个体发展的教育路径和机会。

一、x>0,y>0,a=x+y,b=√(x?+xy+y?),c=m√xy

求是否存在正数m,使对任意正数x,y可便a,b,c为三角形的三边构成三角形,求m。

解答:

①∵a^2=x^2+2xy+y^2> b^2=x?+xy+y?

∴a>b,∴a+c>b恒成立

②|a-c|<b

即:√(x?+xy+y?)>|x+y-m√xy|

平方得:x^2+xy+y^2>(x^2+2xy+y^2)-2m(x+y)√xy+m^2xy

整理得:(m^2+1)xy<2m(x+y)√xy

即:(m^2+1)√xy <2m(x+y)

∵2m(x+y)≥4m√xy

∴4m>m^2+1

解得:2-√15<m<2+√15

所以0<m<2+√15<6

——————————————————————————————————————

二、a>0,b>0求证:1\(a+b)+1/(a+2b)+…+1/(a+nb)<n/√(a+0.5b)(a+(n+1)/2b)

解答:

∵{(a+b+……+m)/n}^2≤(a^2+b^2+……+m^2)/n

∴(a+b+……+m)^2≤n(a^2+b^2+……+m^2)

∴[1/(a+b)+1/(a+2b)+……+1/(a+nb)]^2

<n{[1/(a+b)]^2+[1/(a+2b)]^2+……+[1/(a+nb)]^2}

<n{1/[(a+1/2b)(a+b)]+1/(a+b)(a+2b)+……+ 1/[a+(n-1)b](a+nb)}

<(n/b)×{1/(a+1/2b)-1/(a+b)+1/(a+b)-1/(a+2b)+1/(a+3b)-1/(a+4b)……+1/[a+(n-1)b]-1/(a+nb)}

<(n/b)×{1/(a+1/2b)-1/(a+nb)}

<(n/b)×{1/(a+1/2b)-1/(a+nb+1/2b)}

=(n/b)×nb/[(a+1/2b)(a+nb+1/2b)]

=n^2/[(a+1/2b)(a+nb+1/2b)]

<n^2/{(a+1/2b)[a+(n+1)/2b]}

∴[1/(a+b)+1/(a+2b)+……+1/(a+nb)]^2<n^2/{(a+1/2b)[a+(n+1)/2b]}

1/(a+b)+1/(a+2b)+……+1/(a+nb)>0

n/√(a+0.5b)(a+(n+1)/2b)>0

∴1/(a+b)+1/(a+2b)+……+1/(a+nb)< n/√(a+0.5b)(a+(n+1)/2b)

得证。

文章标签: # 高考 # 数列 # 考生