您现在的位置是: 首页 > 教育分析 教育分析

2020高考考纲数学,2022年数学高考考纲

tamoadmin 2024-05-27 人已围观

简介1.高中文科数学高考范围有哪些?2.数学高考都有哪些是考点?3.2023新高考数学考点4.2023高考数学考纲要求5.高中数学大纲是什麽6.复数的三角形式新高考考不考2023年高考数学平均分为112.2分。这个结论是按照近几年的数据统计所得出的。学员在高中毕业考试数学考试中,满分为150分,这当中选择题为单选和多选两种,满分为100分;主观题涵盖填空题、解题目作答、证明题等,满分为50分。按照近几

1.高中文科数学高考范围有哪些?

2.数学高考都有哪些是考点?

3.2023新高考数学考点

4.2023高考数学考纲要求

5.高中数学大纲是什麽

6.复数的三角形式新高考考不考

2020高考考纲数学,2022年数学高考考纲

2023年高考数学平均分为112.2分。

这个结论是按照近几年的数据统计所得出的。学员在高中毕业考试数学考试中,满分为150分,这当中选择题为单选和多选两种,满分为100分;主观题涵盖填空题、解题目作答、证明题等,满分为50分。按照近几年高中毕业考试的数据统计,2023年全国高中毕业考试数学平均分为112.2分。

——2023新高考数学考纲要求

在新高考数学大纲中,总体结构分为基础与拓展两个部分。其中基础部分包括:函数、三角函数、导数、不等式、数列、初步统计与概率等,而拓展部分则包括:数学证明、向量、空间几何、矩阵、数理逻辑、微积分等。同时,新大纲还增加了数据分析和应用题两个板块,注重培养学生的数学建模能力。

新大纲内容解读

除了结构上的变化,新高考数学大纲在内容上也有了较大调整。首先是知识点的深度和广度,难度相对以往也有所提高。例如,在函数板块中新增了反函数、复合函数、级数等知识点;在三角函数板块中新增了幅角、三角函数图像的性质等知识点。

其次是针对现实生活、工程技术问题的应用题,这些题目不仅考察了学生的基本运算能力,更注重学生的思维能力和解决实际问题的能力。

考生应对新大纲的挑战建议如下:

1、系统复习基础知识

新大纲中基础部分包括了函数、三角函数、导数、不等式、数列、初步统计与概率等。考生需要通过系统的复习来巩固这些基础知识,为拓展部分的学习打下坚实基础。

2、加强数学思维训练

新大纲中强调了应用题和数学建模能力,考生需要加强实际问题的解决能力和数学思维训练。可以多做一些实际应用题和试卷模拟题,提高解题能力和应变能力。

3、注意学习方法和技巧

新大纲中涉及的知识点较多,考生需要注意学习方法和技巧的运用。例如,要注重理解而非死记硬背,要掌握归纳总结和比较分析的方法,以便更好地理解和掌握数学知识。

4、合理安排时间和精力

考生需要根据自身情况制定科学的备考计划,合理安排时间和精力。可以通过制定“阶段性目标”来激励自己,做到有计划、有步骤地完成备考任务。

高中文科数学高考范围有哪些?

福建成考高起点数学考试大纲是什么?福建成人高考属于全国统考,由教育部统一命题,福建省相关部门组织考试及录取事宜。成人高考考试大纲是成人高考命题组的命题依据,目前,成人高考考试大纲一直沿用2011年版《全国各类成人高等学校招生复习考试大纲》,预计2021年成考也不会有太大变动。《数学》科目考试大纲整理如下。

成人高考数学旨在测试中学数学基础知识、基本技能、基本方法,考察逻辑思维能力、运算能力、空间想象能力以及运用所学数学知识和方法分析问题和解决问题的能力。

考试范围包括代数、三角、平面解析几何、概率与统计初步四部分。

考试中不可以使用计算器。

考试内容的知识要求和能力要求作如下说明:

1、知识要求

考试大纲对所列知识提出了三个层次的不同要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求.三个层次要求分别为:

了解:要求考生对所列知识的含义有初步的认识,识记有关内容,并能进行直接运用.

理解、掌握、会:要求考生对所列知识的含义有较深的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题.

灵活应用:要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题.

2、能力要求

逻辑思维能力:会对问题进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行推理;能准确、清晰、有条理地进行表述。

运算能力:理解算理,会根据法则、公式、概念进行数、式、方程的正确 运算和变形;能分析条件,寻求与设计合理、简捷的运算途径;能根据要求对数据进行估计。

空间想象能力:能根据条件画出正确图形,根据图形想象出直观形象;能正确地分析出图形形中基本元素及其相互关系;能对图形进行分解、组合、变形。

分析问题和解决问题能力:能阅读理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。

一、复习考试内容

第一部分代数

(一)函数

1.了解集合的意义及其表示方法.了解空集、全集、子集、又集、并集、 补集的概念及其表示方法,了解符号≠∈¢……的含义,并能运用这些符号表示集合与集合、元素与集合的关系。

2.理解函数概念,会求一些常见函数的定义域。

3.理解函数的单调性和奇偶性的概念,理解增函数、减函数及奇函数、 偶函数的图象特征。

4.理解一次函数、反比例函数的概念,理解它们的图象和性质,会求它们的解析式。

5.理解二次函数的概念,掌握它的图象和性质以及函数:y=ax2+bx+c(a≠0)与y=ax2的图象间的关系;会求二次函数的解析式及最大值或最小值.能运用二次函数的知识解决有关问题。

6.了解反函数的意义。

7.理解指数与对数的概念,会用有关运算法则进行运算. 8.理解指数函数、对数函数的概念,理解它们的图象和性质,会他们解决有关问题。

9.会求简单的指数方程和对数方程.

(二)不等式和不等式组

1 .了解不等式的性质,会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式.会解一元二次不等式.了解区间的概念,会在数轴上表示不等式或不等式组的解集.

2.了解绝对值不等式的性质,会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式.

(三)数列

1.了解数列及其有关概念。

2.理解等差数列、等差中项的概念,会运用等差数列的通项公式、前n 项和公式解决有关问题。

3.理解等比数列、等比中项的概念,会运用等比数列的通项公式前n项和公式解决有关问题。

(四)导数

1.了解数列、函数极限的概念,了解数列、函数极限的四则运算法则.会求简单数列的极限。

2.了解导数概念及其几何意义。

第二部分 三角

(一)三角函数及其有关概念

1.了解正角、负角、零角的概念,理解象限角和终边相同的角的概念.了解弧度的概念,会进行弧度与角度的换算。

2.理解任意角三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值。

(二)三角函数式的变换

1.掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明。

2.了解两角和、两角差、二倍角的正弦、余弦、正切的公式,会用它们进行计算、化简和证明。

(三)三角函数的图象和性质

1.理解正弦函数、余弦函数的图象和性质,会解决有关问题。

2.了解正切函数的图象和性质。

3.会求函数y=Asin(ωx+φ)的周期、最大值和最小值。

4.会由已知三角函数值求角、了解符号arcsinx,arccosx,arctgx含义。

(四)解三角形

1.掌握直角三角形的边角关系,会用它们解直角三角形。

2.理解正弦定理和余弦定理,会用它们解斜三角会根据三角形两边及 其夹角求三角形的面积。

第三部分 平面解析几何

(一)平面向量

1.了解向量的概念,了解向量的几何表示,了解共线向量的概念。

2.了解向量的加、减运算,了解数乘向量的运算,了解两个向量共线的条件。

3.了解平面向量的分解定理,了解直线的向量参数方程。

4.了解向量的数量积运算,了解其几何意义和在处理长度、角度及垂直问题的应用,了解向量垂直的条件。

5.了解向量的直角坐标及其运算。

6.掌握平面内两点间的距离公式、线段的中点公式和了解平移公式。

(二)直线

1.理解直线的倾斜角和斜率的概念,会求直线的斜率。

2.会求直线方程。

3.掌握两条直线平行与垂直的条件以及点到直线的距离公式,会用它们解决有关问题。

(三)圆锥曲线

1.了解曲线和方程的关系,会求两条曲线的交点。

2.了解充分条件、必要条件、充分必要条件的概念。

3.掌握圆的标准方程和一般方程,会判断直线与圆的位置关系,能运用它们解决有关问题。

4、理解椭圆、双曲线、抛物线的概念,了解它们性质,会求它们的标准方程。

第四部分 概率与统计初步

(一) 排列、组合

1.了解分类记数原理和分步记数原理。

2.了解排列、组合的意义,会用排列数、组合数的计算公式。

3.会解排列、组合的简单应用题。

(二) 概率初步

1.了解随机事件及其概率意义。

2.了解等可能性事件的概率的意义,会用记数方法和排列组合基本公式计算一些等可能性事件的概率。

3.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。

4.了解相互独立事件的意义.会用相互独立事件的概率乘法公式计算一些事件的概率。

5.会计算事件在n次独立重复试验屮恰好发生k次的概率。

6.了解离散型随机变量及其期望的意义,会根据离散型随机变量的分布列求出期望值。

(三)统计初步

1.了解总体和样本的概念,会计算样本平均数和样本方差。

2.了解线性回归的方法及其简单应用。

二、考试形式及试卷结构

考试采用闭卷笔试形式,全卷满分为150分,考试时间为120分钟。

试卷结构

(一)试卷内容比例

代数 约50%

三角 约20%

平面解析几何 约20%

概率与统计初步 约10%

(二)题型比例

选择题 约50%

填空题 约10%

解答题 约40%

(三)试题难易比例

较容易题 约30%

中等难度题 约50%

较难题 约20%

郑重声明:以上考试大纲均依据《全国成人高等学校招生复习考试大纲(2011年版)》整理,仅作为交流和学习使用,方便考生了解《数学》科目考试重点,并不具有权威性和确定性,一切2021年成人高考《数学》科目考试大纲均以2021年福建省教育考试院规定为准。

自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料: style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">数学高考都有哪些是考点?

高中文科数学高考范围有三角函数、向量、概率与统计、立体几何、数列、圆锥曲线、函数、导数与不等式等。

1、三角函数、向量、解三角形

(1)三角函数画图、性质、三角恒等变换、和与差公式。(2)向量的工具性。(3)正弦定理、余弦定理、解三角形背景。

2、概率与统计

(1)古典概型。(2)茎叶图。(3)直方图。(4)回归方程(2x2列联表)。(5)(理)概率分布、期望、方差、排列组合。

3、立体几何

(1)平行。(2)垂直。(3)角a:异面直线角b:(理)二面角、线面角。(4)利用三视图计算面积与体积。

4、数列

(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。(2)错位相减法、裂项求和法。(3)应用题。

5、圆锥曲线(椭圆)与圆

(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。(2)圆的方程,圆与直线的位置关系。

6、函数、导数与不等式

(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。(2)利用基本不等式、对勾函数性质。

三角函数/数列:一般全国卷第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。

概率:一般全国卷第18题会考概率题。概率题相对比较简单,也是必须得分的题,主要还是对作图和识图能力考查比较多。

解析几何:一般全国卷第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。

2023新高考数学考点

一、集合、简易逻辑(14课时,8个) 1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件. 二、函数(30课时,12个) 1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例. 三、数列(12课时,5个) 1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式. 四、三角函数(46课时17个) 1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质; 10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例. 五、平面向量(12课时,8个) 1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移. 六、不等式(22课时,5个) 1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式. 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念; 10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程. 八、圆锥曲线(18课时,7个) 1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质. 九、(B)直线、平面、简单何体(36课时,28个) 1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球. 十、排列、组合、二项式定理(18课时,8个) 1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’ 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质. 十一、概率(12课时,5个) 1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验. 选修Ⅱ(24个) 十二、概率与统计(14课时,6个) 1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归. 十三、极限(12课时,6个) 1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性. 十四、导数(18课时,8个) 1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值. 十五、复数(4课时,4个) 1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法; 4.数系的扩充. 追问: 拜托……我们是新课改的,选修多了去了…… 还有我说的那个 不等式 是怎么回事? 回答: 至于你说的 不等式 ,高考肯定会考,但很少直接出题考你,而是通过一些题间接的考,特别是一些大体,几个步骤间接对不等式的性质考察,往往,这是解题关键 追问: 那你说比如什么 柯西不等式 之类的放到大题里面不就太扯了…… 回答: 新课程教材新增内容考点共14 个,分别是: 1. 幂函数 2. 函数零点 与 二分法 3. 三视图 4.算法程序框图与基本算法语句 5. 茎叶图 6.随机数与 几何概型 7.全称量词与存在 量词 8.积分(理科) 9.合情推理与演绎推理 10. 条件概率 (理科) 补充: 并不是很扯,这是可能的,比如在大体往往有一个小问是证明题,这个证明题可以出为用 柯西不等式 证明,但往往只是一个有限个数的式子。 我经历过高三和高考,做过很多题, 不等式 往往重在不等式的证明,而证明方法和思维是很重要的,常用的要记熟( 放缩法 ……)

2023高考数学考纲要求

2023新高考数学考点如下:

1、集合与命题:集合的概念与运算、命题、充要条件。

2、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。

3、函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。

4、三角比与三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、万能公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。

5、平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。

6、数列:数列的有关概念、等差数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。

7、直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。

8、立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。

9、排列、组合:排列、组合应用题、二项式定理及其应用。

10、复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。

11、矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。

12、算法初步:流程图、算法语句、条件语句、循环语句。

高中数学大纲是什麽

2023高考数学考纲要求为:增加了数学文化的要求。在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。在现行考试大纲三个选考模块中删去《几何证明选讲》,其余2个选考模块的内容和范围都不变,考生从《坐标系与参数方程》.《不等式选讲》2个模块中任选1个作答。

总体上,这些变化对2023年高考数学考试影响不大。基于两个原因︰一是在这次高考考纲修订基本原则“坚持整体稳定,推进改革创新;优化考试内容,着力提高质量;提前谋篇布局,体现素养导向”中,将“整体稳定”放在了首位。

2015年、2016年全国数学2卷就突出了稳中求变,约有80%的试题是稳定的,只有约20%的试题是创新的,2020年高考仍然还会沿用这种思路命制试卷。

二是近两年高考试卷已先于2023年高考考纲在命题中渗透了一些变化与创新,全国数学⒉卷最大的变化点是,突出了社会主义核心价值观﹐强调了中国传统数学文化精髓。在数学文化方面,2016年高考全国2卷理科数学第8题、文科数学第9题涉及到了我国南宋著名数学家秦九韶提出的多项式求值的算法。

复数的三角形式新高考考不考

Ⅲ.考试内容

1. 平面向量

考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.

考试要求:

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.

(2)掌握向量的加法和减法.

(3)掌握实数与向量的积,理解两个向量共线的充要条件.

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.

2.集合、简易逻辑

考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充分条件和必要条件.

考试要求:

(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

3.函数 考试内容:

映射.函数.函数的单调性.奇偶性.反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数.

函数的应用.考试要求:

(1)了解映射的概念,理解函数的概念.

(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.

(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

4.不等式

考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.

考试要求:

(1)理解不等式的性质及其证明.

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.

(3)掌握分析法、综合法、比较法证明简单的不等式.

(4)掌握简单不等式的解法.

(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│.

5.三角函数

考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanαcotα=1.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.

考试要求:

(1)了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.

(2)理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义;掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义.

(6)会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示.

(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

6.数列

考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.

考试要求:

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

7.直线和圆的方程

考试内容:直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.

考试要求:

(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.

(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.

(3)了解二元一次不等式表示平面区域.

(4)了解线性规划的意义,并会简单的应用.

(5)了解解析几何的基本思想,了解坐标法.

(6)掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程.

8.圆锥曲线方程

考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.

抛物线及其标准方程.抛物线的简单几何性质.

考试要求:

(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.

(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.</P< p>

(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.

(4)了解圆锥曲线的初步应用.

9(A).直线、平面、简单几何体 (考生可在9(A)和9(B)中任选其一)

考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体、正多面体、棱柱、棱锥、球.

考试要求:

(1)理解平面的基本性质,会用斜二侧的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.

(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念.对于异面直线的距离,只要求会计算已给出公垂线时的距离.

(3)掌握直线和平面平行的判定定理和性质定理. 掌握直线和平面垂直的判定定理和性质定理. 掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念. 掌握三垂线定理及其逆定理.

(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. 掌握两个平面垂直的判定定理和性质定理.

(5)会用反证法证明简单的问题.

(6)了解多面体、凸多面体的概念,了解正多面体的概念.

(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.

(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.

(9)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式.

9(B).直线、平面、简单几何体

考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.

空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.

直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.

直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.

平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.

多面体.正多面体.棱柱.棱锥.球.

考试要求:

(1)理解平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图. 能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.

(2)掌握直线和平面平行的判定定理和性质定理. 掌握直线和平面垂直的判定定理,掌握直线和平面垂直的判定定理. 掌握三垂线定理及其逆定理.

(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.

(4)了解空间向量的基本定理. 理解空间向量坐标的概念,掌握空间向量的坐标运算.

(5)掌握空间向量的数量积的定义及其性质. 掌握用直角坐标计算空间向量数量积的公式. 掌握空间两点间距离公式.

(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.

(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.

(8)了解多面体、凸多面体的概念.了解正多面体的概念.

(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.

(10)了解棱锥的概念,掌握正棱锥的性质。会画正棱锥的直观图。

(11)了解球的概念.掌握球的性质.掌握球的表面积公式、体积公式

10.排列、组台、二项式定理

考试内容:分类计数原理与分步计数原理. 排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.

考试要求:

(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.

(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.

(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.

(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.

11.概率

考试内容:

随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.

考试要求:

(1)了解随机事件的发生存在着规律性和随机事件概率的意义.

(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.

(4)会计算事件在n次独立重复试验中恰好发生κ次的概率.

12.统计

考试内容:抽样方法.总体分布的估计.总体期望值和方差的估计.

考试要求:

(1)了解随机抽样,了解分层抽样的意义,会用它们对简单实际问题进行抽样.

(2)会用样本频率分布估计总体分布.

(3)会用样本估计总体期望值和方差.

13.导数

考试内容:导数的背景.导数的概念. 多项式函数的导数.利用导数研究函数的单调性和极值,函数的最大值和最小值.

考试要求:

(1)了解导数概念的实际背景.

(2)理解导数的几何意义.

(3)掌握函数y=c(c为常数)和y=xn(n∈N+)的导数公式,会求多项式函数的导数.

(4)理解极大值、极小值、最小值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.

(5)会利用导数求某些简单实际问题的最大值和最小值.

不会。在高考数学的考纲中对于复数部分高考只考简单的复数计算且复数不是考试重点,只需了解即可。普通高等学校招生全国统一考试简称“高考”,是中华人民共和国合格的高中毕业生或具有同等学力的考生参加的选拔性考试。

文章标签: # 平面 # 直线 # 了解