您现在的位置是: 首页 > 教育分析 教育分析

高考文数试卷及答案,高考文数试题及答案

tamoadmin 2024-05-31 人已围观

简介1.急求2012福建高考文科数学题目及答案2.2022江西赣州一模高三各科试卷及答案解析汇总(已更新)3.2022全国乙卷数学答案(文科):全国乙卷数学2022文数试卷及答案4.2022年全国乙卷文科数学考试题目真题5.2012全国新课标卷文科数学A卷答案TXT格式的6.安徽a10联盟2022届高三最后一卷文数试卷及答案 数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大

1.急求2012福建高考文科数学题目及答案

2.2022江西赣州一模高三各科试卷及答案解析汇总(已更新)

3.2022全国乙卷数学答案(文科):全国乙卷数学2022文数试卷及答案

4.2022年全国乙卷文科数学考试题目真题

5.2012全国新课标卷文科数学A卷答案TXT格式的

6.安徽a10联盟2022届高三最后一卷文数试卷及答案

高考文数试卷及答案,高考文数试题及答案

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学试题答案解析

高考数学复习主干知识点汇总:

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想 方法 和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与 其它 学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及答案解析相关 文章 :

★ 2022高考甲卷数学真题试卷及答案

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022高考全国甲卷数学试题及答案

★ 2022高考数学大题题型总结

★ 2022全国乙卷理科数学真题及答案解析

★ 2022年全国乙卷高考数学(理科)试卷

★ 2022年新高考1卷语文真题及答案解析

★ 全国新高考一卷2022语文试题及答案一览

★ 2022江西高考文科数学试题及答案

★ 2022全国新高考II卷语文试题及答案解析

急求2012福建高考文科数学题目及答案

高考数学命题创新试题形式,引导教学注重培养核心素养和数学能力。下面是我为大家收集的关于2022年全国新高考1卷数学真题及答案详解。希望可以帮助大家。

2022年全国新高考1卷数学真题

2022年全国新高考1卷数学答案详解

如何提升高考数学成绩

1.对数学的认知。由于成绩长期没有提升,很多学生觉得数学本身就难,或者觉得自己不具备某种天赋、某种 方法 ,于是对自己怀疑,甚至对自己没有信心,那么这样的话很容易挫伤学习数学的积极性。

2.备考的方向。很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永远都做不完题,结果是成绩没有提升上去。那么这个方向,当然也有一些考生走向了另一个极端,不喜欢做题甚至很少做题,这些考生有的觉得自己很聪明,应该能学好理科,特别是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。

3.训练方式。备考中学习和考试其实既有区别又有联系,现实中学习努力的考生有的不一定会考试,会考试的学生不一定努力学习。当然前者远远多于后者。无论是会考试还是不会考试的学生,要想把试考好,对于绝大多数考生来讲,还是需要合理的训练,例如说数学学科来说,你需要在平时训练中注重这些关键词:时间分配、正确率、题型以及相关的解题方法、步骤等等。很多学生没有训练的目标,甚至一些考生做题的目标仅仅是为了完成老师布置的作业,这样训练方式肯定很难让自己的成绩提升上去。

4.教师教学等客观原因。在 毕业 班中老师重视成绩优秀的考生是普遍的现象,当然如果面对一些平时努力学习,成绩没有提升的同学,作为老师肯定要给学生们出谋划策,帮他们做改变,把成绩提升上去,同时现实中也并非所有老师都能这样去做,有的老师精力也不允许。但是无论怎样,考生成绩上不去,帮他们提升成绩更是老师的责任。如果我带一个班级的学生,肯定不会一刀切去布置作业,让每一个学生都按照同样的模式去走,要根据他们的实际需要,给出建议和方向。还是那句话,很多时候学习数学不是你做了多少题而是做了多少有效的题。

高考后如何调节心理

1、客观看待高考成绩

考试虽然结束了,但随之而来的对成绩的预测和获知,以及由此带来的考生种种心态变化和行为表现,尤其需要家长、学校和社会密切关注。

考试结束后,考生和家长的视线转移也会使情绪心理出现新变化,比较集中体现在对考试分数和能报考什么样的大学等方面的担忧。

建议考生应积极面对高考,懂得高考并不是人生的出路,高考只是人生中的一段旅程,要将其当作人生中的一个节点,是高中生活的结束,也是未来新生活的开始。考生不妨利用这段时间,好好规划一下自己的未来,比如考虑怎么选大学专业,或者要不要复读。每个人都可以有梦想,并为之去努力。同时家长也要保持平常心态,充分发挥好家庭“避风港”的作用,给孩子更多关心和呵护。

2、主动调整心理状态

考生考后常见的心理问题,主要表现为过度放纵、抑郁自责、焦虑不安、强迫思维、失眠多梦、躯体不适等。如果考生出现连续失眠、茶饭不思、无诱因腹疼腹泻、无故发火、易发脾气等情况,家长要注意考生可能存在的不良情绪,需引起关注并及时和积极引导、干预。

曾干指出,考生完成考试后,应保持平和的心态,正确调节自己的生活和心境,尤其要避免两种极端现象:一是过分放松、娱乐无度。不少考生认为反正考完了,要么一天到晚睡觉,要么长时间玩电脑、打游戏或与同学狂欢,结果反而招致身心疲惫;二是过度焦虑、自我封闭。考后出现适当的紧张、担忧是一种正常的心理状态,但是过度担心就不正常了,有些考生甚至足不出户,觉得自己考砸了,将自己封闭在家里,这些都是不可取的做法。

3、适当充实假期生活

建议考生在高考结束后,应遵循正常的生活和作息规律,并充分利用这段时间对自己中学时代的生活进行一个 总结 ,对未来的大学生涯进行一些“设想”,让自己能够平稳度过高考后的这段时光。

另外,高考后的暑假,考生还可根据各自不同的 兴趣 爱好 ,在注意人身安全和做好防疫的前提下,利用假期去参加有益身心健康的活动,学习课堂之外的知识,比如 体育运动 、考驾照、短途旅游等,也可从事志愿服务等 社会实践 ,增加社会阅历,从不同 渠道 去缓解高考成绩和填报志愿带来的压力。

2022年全国新高考1卷数学真题及答案详解相关 文章 :

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022高考甲卷数学真题试卷及答案

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022北京卷高考文科数学试题及答案解析

★ 2022高考全国甲卷数学试题及答案

★ 2022高考全国甲卷文综试题及答案一览

★ 2022高考数学大题题型总结

★ 2022全国乙卷理科数学真题及答案解析

★ 2022年高考数学必考知识点总结最新

★ 2022年新高考1卷语文真题及答案解析

2022江西赣州一模高三各科试卷及答案解析汇总(已更新)

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2022全国乙卷数学答案(文科):全国乙卷数学2022文数试卷及答案

2022高考在即,各地的高三模拟考试也在陆续进行,模考是高考前的重要考试,能帮助考生查漏补缺其中,2022赣州一模将在3月19日开考,本文整理了一下2022江西赣州一模高三各科试卷及答案解析汇总。

一、2022赣州一模语文试卷及答案

语文试卷

语文答案

待更新

二、2022赣州一模数学试卷及答案

文科数学试卷

文科数学答案

理科数学试卷

理科数学答案

三、2022赣州一模英语试卷及答案

英语试卷

英语答案

四、2022赣州一模文综试卷及答案

文综试卷

文综答案

五、2022赣州一模理综试卷及答案

理综试卷

理综答案

2022年全国乙卷文科数学考试题目真题

2022年高考数学考试已经结束,本期为大家整理2022全国乙卷数学答案文科数学的相关内容,一起来看看全国乙卷数学2022年考试试卷真题及参考答案解析吧,供大家考试结束后估分、对答案使用。

2022年使用全国乙卷文科数学试卷的省份有:河南、山西、江西、安徽、甘肃、青海、内蒙古、黑龙江、吉林、宁夏、新疆、陕西,共12省市区。

目前尚未收到官方公布的正式答案,以下答案仅供参考,后续我们将第一时间为大家替换官方参考答案

2012全国新课标卷文科数学A卷答案TXT格式的

很多学生看上去很用功,可数学成绩总是不理想。原因之一是,学习效率太低。以下是我精心收集整理的2022年全国乙卷文科数学考试题目真题,下面我就和大家分享,来欣赏一下吧。

2022年全国乙卷文科数学考试题目真题

高中学好数学的 方法

一定要有错题本。这个很重要,纵览各省各届的高考状元,他们的数学成绩几近满分,问到他们的学习数学的方法是都不约而同的说到了要有一个错题本,平时收集自己做题中遇到的错题,,然后分析其解法和错误的原因。这个对于提高数学成绩十分重要。

上课认真地听讲,回答老师的问题。我们平时考试的做题思路哪里来?大多是从平时老师上课时的讲解中获得的。自己的收集和感悟不过是都是一些皮毛,老师的对一道题目的讲解具有适用性和推广性,把老师在课堂上对于一些重点题型的解法掌握了,才能在考试的时候灵活应用其他难题的解答。所以上课的听讲也几乎决定了数学成绩的好坏。

多问,多讨论。这也是提高成绩直接有效的方法。对于那些数学学霸们,不要仅仅的羡慕嫉妒恨,学会利用他们,不会的题目找到他们,他们肯定会帮你解答,这时候,不要不懂装懂,一定要抱着打破砂锅问到底的心理。通过交流自己的思想思路自然而然的就激发碰撞出来。还有,不要怕问老师,俗话说学习要不耻下问。为了自己数学成绩的提高哪怕厚着脸皮也要去问。再说了一般同学和老师都会悉心地帮你解答。

看数学书。对于那些数学成绩考不及格甚至更低的同学。问题一定出现在对于数学的公式和原理不会不懂。就好比上战场打仗,如果你连这些最基本的武器,铠甲都没有,谈何打败敌人。所以如果你的数学成绩低,记住先不要做大量的题目,一定先把公式掌握好,掌握透。其实数学上的公式你要背下来到不难,但是不理解的记,很快就会忘记。所以,如果想提高数学成绩,赶紧的记住并理解公式和原理,然后再攻题。

数学成绩差怎么提高

俗话说“兴趣是最好的老师”,要想提高孩子的数学成绩首要做的就是培养孩子对数学的兴趣,可以利用游戏活动等方式吸引孩子的注意力,培养兴趣。

很多孩子的数学成绩差多是因为以前的基础知识没有掌握好,这样是恶性循环,所以家长可以给孩子辅导以前的知识点,巩固孩子数学的基础知识。

数学属于比较灵活的学科,有些孩子靠死记硬背来掌握数学,这样的学习是很不好的,应该多教孩子灵活多变的解题技巧和思路,明白原理是关键。

花同样的时间两个孩子取得的成绩也可能相差很大,这是因为学习效率的问题,一定要让孩子抓住课堂上的几十分钟,这是学习的关键。

要让孩子养成 课前预习 和课后巩固的习惯,课前预习能让孩子对知识点稍微有个印象,上课时可以重点听这些,课后的巩固则是加深对课堂上知识的理解,这样会快速掌握好数学。

2022年全国乙卷文科数学考试题目真题相关 文章 :

★ 2022全国乙卷高考数学(理科)试卷及答案解析

★ 2022全国乙卷理科数学真题及答案解析

★ 2022全国乙卷理科数学试卷及答案解析

★ 全国乙卷2022高考理科数学试题及答案解析

★ 2022年全国乙卷高考理科数学(真题)

★ 2022年高考数学全国乙卷(理科)试题答案(预测)

★ 2022年全国乙卷理科数学试卷及答案

★ 2022全国乙卷高考数学(理科)试题及答案

★ 2022年高考全国乙卷数学理科试题

★ 2022全国乙卷理科高考数学试题下载

安徽a10联盟2022届高三最后一卷文数试卷及答案

tupainban2012年高考文科数学试题解析(全国课标)

一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则

(A)A?B(B)B?A(C)A=B(D)A∩B=?

命题意图本题主要考查一元二次不等式解法与集合间关系,是简单题.

解析A=(-1,2),故B?A,故选B.

(2)复数z=?的共轭复数是?

(A)(B)(C)(D)?

命题意图本题主要考查复数的除法运算与共轭复数的概念,是简单题.

解析∵?=?=?,∴?的共轭复数为?,故选D.

(3)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线?y=12x+1上,则这组样本数据的样本相关系数为?

(A)-1(B)0(C)12(D)1

命题意图本题主要考查样本的相关系数,是简单题.

解析有题设知,这组样本数据完全正相关,故其相关系数为1,故选D.

(4)设?,?是椭圆?:?=1(?>?>0)的左、右焦点,?为直线?上一点,△?是底角为?的等腰三角形,则?的离心率为

.?...?

命题意图本题主要考查椭圆的性质及数形结合思想,是简单题.

解析∵△?是底角为?的等腰三角形,

∴?,?,∴?=?,∴?,∴?=?,故选C.

(5)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则?的取值范围是

(A)(1-3,2)?(B)(0,2)?

(C)(3-1,2)?(D)(0,1+3)

命题意图本题主要考查简单线性规划解法,是简单题.

解析有题设知C(1+?,2),作出直线?:?,平移直线?,有图像知,直线?过B点时,?=2,过C时,?=?,∴?取值范围为(1-3,2),故选A.

(6)如果执行右边的程序框图,输入正整数?(?≥2)和实数?,?,…,?,输出?,?,则

.?+?为?,?,…,?的和?

.?为?,?,…,?的算术平均数

.?和?分别为?,?,…,?中的最大数和最小数

.?和?分别为?,?,…,?中的最小数和最大数

命题意图本题主要考查框图表示算法的意义,是简单题.

解析由框图知其表示的算法是找N个数中的最大值和最小值,?和?分别为?,?,…,?中的最大数和最小数,故选C.

21世纪教育网(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为

.6.9.12.18

命题意图本题主要考查简单几何体的三视图及体积计算,是简单题.

解析由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为?=9,故选B.

(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为?

(A)6π(B)43π(C)46π(D)63π

命题意图

解析

(9)已知?>0,?,直线?=?和?=?是函数?图像的两条相邻的对称轴,则?=

(A)π4(B)π3?(C)π2?(D)3π4

命题意图本题主要考查三角函数的图像与性质,是中档题.

解析由题设知,?=?,∴?=1,∴?=?(?),

∴?=?(?),∵?,∴?=?,故选A.

(10)等轴双曲线?的中心在原点,焦点在?轴上,?与抛物线?的准线交于?、?两点,?=?,则?的实轴长为

..?.4?.8

命题意图本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.

解析由题设知抛物线的准线为:?,设等轴双曲线方程为:?,将?代入等轴双曲线方程解得?=?,∵?=?,∴?=?,解得?=2,

∴?的实轴长为4,故选C.

(11)当0<?≤12时,?,则a的?取值范围是?

(A)(0,22)(B)(22,1)?(C)(1,2)(D)(2,2)

命题意图本题主要考查指数函数与对数函数的图像与性质及数形结合思想,是中档题.

解析由指数函数与对数函数的图像知?,解得?,故选A.

(12)数列{?}满足?,则{?}的前60项和为

(A)3690?(B)3660?(C)1845(D)1830

命题意图本题主要考查灵活运用数列知识求数列问题能力,是难题.

解析法1有题设知

=1,①?=3?②=5?③?=7,?=9,

=11,?=13,?=15,?=17,?=19,?,

……

∴②-①得?=2,③+②得?=8,同理可得?=2,?=24,?=2,?=40,…,

∴?,?,?,…,是各项均为2的常数列,?,?,?,…是首项为8,公差为16的等差数列,

∴{?}的前60项和为?=1830.

法2可证明:

二.填空题:本大题共4小题,每小题5分。

(13)曲线?在点(1,1)处的切线方程为________

命题意图本题主要考查导数的几何意义与直线方程,是简单题.

解析∵?,∴切线斜率为4,则切线方程为:?.

(14)等比数列{?}的前n项和为Sn,若S3+3S2=0,?则公比?=_______

命题意图本题主要考查等比数列n项和公式,是简单题.

解析当?=1时,?=?,?=?,由S3+3S2=0得?,?=0,∴?=0与{?}是等比数列矛盾,故?≠1,由S3+3S2=0得?,?,解得?=-2.

(15)?已知向量?,?夹角为?,且|?|=1,|?|=?,则|?|=.

命题意图.本题主要考查平面向量的数量积及其运算法则,是简单题.

解析∵|?|=?,平方得?,即?,解得|?|=?或?(舍)

(16)设函数?=(x+1)2+sinxx2+1的最大值为M,最小值为m,则M+m=____

命题意图本题主要考查利用函数奇偶性、最值及转换与化归思想,是难题.

解析?=?,

设?=?=?,则?是奇函数,

∵?最大值为M,最小值为?,∴?的最大值为M-1,最小值为?-1,

∴?,?=2.

三、 解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)已知?,?,?分别为?三个内角?,?,?的对边,?.

(Ⅰ)求?;

(Ⅱ)若?=2,?的面积为?,求?,?.

命题意图本题主要考查正余弦定理应用,是简单题.

解析(Ⅰ)由?及正弦定理得

由于?,所以?,

又?,故?.

(Ⅱ)?的面积?=?=?,故?=4,

而故?=8,解得?=2.

18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。?

(Ⅱ)花店记录了100天?玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n 14 15 16 17 18 19 20

频数 10 20 16 16 15 13 10

(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天?的日利润(单位:元)的平均数;

(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

命题意图本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.

解析(Ⅰ)当日需求量?时,利润?=85;

当日需求量?时,利润?,

∴?关于?的解析式为?;

(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为

=76.4;

(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为

(19)(本小题满分12分)如图,三棱柱?中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点。

(I)?证明:平面?⊥平面?

(Ⅱ)平面?分此棱柱为两部分,求这两部分体积的比.

命题意图本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

解析(Ⅰ)由题设知BC⊥?,BC⊥AC,?,∴?面?,又∵?面?,∴?,

由题设知?,∴?=?,即?,

又∵?,∴?⊥面?,∵?面?,

∴面?⊥面?;

(Ⅱ)设棱锥?的体积为?,?=1,由题意得,?=?=?,

由三棱柱?的体积?=1,

∴?=1:1,?∴平面?分此棱柱为两部分体积之比为1:1.

(20)(本小题满分12分)设抛物线?:?(?>0)的焦点为?,准线为?,?为?上一点,已知以?为圆心,?为半径的圆?交?于?,?两点.

(Ⅰ)若?,?的面积为?,求?的值及圆?的方程;

(Ⅱ)若?,?,?三点在同一条直线?上,直线?与?平行,且?与?只有一个公共点,求坐标原点到?,?距离的比值.

命题意图本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

解析设准线?于?轴的焦点为E,圆F的半径为?,

则|FE|=?,?=?,E是BD的中点,

(Ⅰ)?∵?,∴?=?,|BD|=?,

设A(?,?),根据抛物线定义得,|FA|=?,

∵?的面积为?,∴?=?=?=?,解得?=2,

∴F(0,1),?FA|=?,?∴圆F的方程为:?;

(Ⅱ)?解析1∵?,?,?三点在同一条直线?上,?∴?是圆?的直径,?,

由抛物线定义知?,∴?,∴?的斜率为?或-?,

∴直线?的方程为:?,∴原点到直线?的距离?=?,

设直线?的方程为:?,代入?得,?,

∵?与?只有一个公共点,?∴?=?,∴?,

∴直线?的方程为:?,∴原点到直线?的距离?=?,

∴坐标原点到?,?距离的比值为3.

解析2由对称性设?,则?

点?关于点?对称得:?

得:?,直线?

切点?

直线?

坐标原点到?距离的比值为?。

(21)(本小题满分12分)设函数f(x)=?ex-ax-2

(Ⅰ)求f(x)的单调区间

(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)?f?(x)+x+1>0,求k的最大值

请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.

22.?(本小题满分10分)选修4-1:几何选讲

如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:

(Ⅰ)?CD=BC;

(Ⅱ)△BCD∽△GBD.

命题意图本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.

解析(Ⅰ)?∵D,E分别为AB,AC的中点,∴DE∥BC,

∵CF∥AB,∴BCFD是平行四边形,

∴CF=BD=AD,连结AF,∴ADCF是平行四边形,

∴CD=AF,

∵CF∥AB,?∴BC=AF,?∴CD=BC;

(Ⅱ)?∵FG∥BC,∴GB=CF,

由(Ⅰ)可知BD=CF,∴GB=BD,

∵∠DGB=∠EFC=∠DBC,?∴△BCD∽△GBD.

23.?(本小题满分10分)选修4-4:坐标系与参数方程

已知曲线?的参数方程是?(?是参数),以坐标原点为极点,?轴的正半轴为极轴建立极坐标系,曲线?:的极坐标方程是?=2,正方形ABCD的顶点都在?上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,?).

(Ⅰ)求点A,B,C,D的直角坐标;

(Ⅱ)设P为?上任意一点,求?的取值范围.

命题意图本题考查了参数方程与极坐标,是容易题型.

解析(Ⅰ)由已知可得?,?,

,?,

即A(1,?),B(-?,1),C(―1,―?),D(?,-1),

(Ⅱ)设?,令?=?,

则?=?=?,

∵?,∴?的取值范围是[32,52].

24.(本小题满分10分)选修4-5:不等式选讲

已知函数?=?.

(Ⅰ)当?时,求不等式?≥3的解集;

(Ⅱ)?若?≤?的解集包含?,求?的取值范围.

命题意图本题主要考查含绝对值不等式的解法,是简单题.

解析(Ⅰ)当?时,?=?,

当?≤2时,由?≥3得?,解得?≤1;

当2<?<3时,?≥3,无解;

当?≥3时,由?≥3得?≥3,解得?≥8,

∴?≥3的解集为{?|?≤1或?≥8};

(Ⅱ)?≤,

当?∈[1,2]时,?=?=2,

∴?,有条件得?且?,即?,

故满足条件的?的取值范围为[-3,0].

2022年的安徽A10联盟5月联考考试已经结束,家长和考生们一定很关心考的怎么样,下面我将公布本次考试文数试卷答案及解析汇总,供考生和家长参考,以便估分和定位水平,查漏补缺,为高考全力冲刺瞄准方向。

同学们如果想要知道自己考试成绩所对应的大学院校,可以点击文章开头或末尾处的 “输入分数,看能上的大学” ,进行查看!

一、2022年安徽A10联盟5月联考文数试卷

二、2022安徽A10联盟5月联考文数试卷及答案汇总

文章标签: # 数学 # 高考 # 答案