您现在的位置是: 首页 > 教育分析 教育分析

高考数学压轴函数题_高考数学压轴函数

tamoadmin 2024-06-06 人已围观

简介1.高考数学最难的压轴题解题技巧2.高考数学(老师,大神进)导数压轴题:分离参数分函数分别讨论性质洛必达不直接求驻点(高分无限悬赏)高考的时候主要还是考基础的东西 会用到数列的关系来综合解题 你完全可以放弃那四分 然后把你的时间用来巩固这些稍微基础的地方 我觉得会划算点 至于 解题的问题 对于数学来说 就是多做多思考高考数学最难的压轴题解题技巧是问具体题目?还是就问这样一个较抽象的问题?如

1.高考数学最难的压轴题解题技巧

2.高考数学(老师,大神进)导数压轴题:分离参数分函数分别讨论性质洛必达不直接求驻点(高分无限悬赏)

高考数学压轴函数题_高考数学压轴函数

高考的时候主要还是考基础的东西 会用到数列的关系来综合解题 你完全可以放弃那四分 然后把你的时间用来巩固这些稍微基础的地方 我觉得会划算点 至于 解题的问题 对于数学来说 就是多做多思考

高考数学最难的压轴题解题技巧

是问具体题目?还是就问这样一个较抽象的问题?如果有具体题目,先发上来;如果只是抽象的问压轴的函数题怎么解,这个问题说实话很难具体回答。因为函数的知识点是最多的,内容也是比较杂的,有很多考点可挖掘。但有一点可以确定,就是无论是哪个地区的高考试题,函数一定都是重中之重,所以大家对函数的复习一定要做到全面、深入、细致,争取不留任何盲区!

高考数学(老师,大神进)导数压轴题:分离参数分函数分别讨论性质洛必达不直接求驻点(高分无限悬赏)

高考数学压轴题综合性比较强,一道题就会涉及很多的知识点,基本都是为那些学霸们准备的。但是,有时间就去试一试,能拿一分就多拿一分。下面是我整理的高考压轴题型以及压轴题的解题技巧。

1 高考数学最难的压轴题——立体几何

 立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。计算题主要是体积,注意将字母换位(等体积法);

 线面距离用等体积法。理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。

1 高考数学最难的压轴题——圆锥曲线

 圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。

 第二问有直线与圆锥曲线相交时,记住“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>;0,设直线时注意讨论斜率是否存在。

 第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有弦长问题(代入弦长公式)、定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系。

1 高考数学最难的压轴题——导数

 高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立,任意,存在等。

 1.一般题目中会有少量文字描述,所以就会涉及文字的简单翻译。

 2.题目中最核心的描述为各类式子:主要为普通类型:一般涉及三次函数,指对数,分式函数,绝对值函数,个别情况会涉及三角函数,特殊类型:主要含有x1,x2,f(x1),f(x2)类型。

 解题思路:文字翻译处理一般较简单,核心为式子运算变形处理,对于特定式子主要通过模板解决,重点是导数压轴题中一般式子运算变形处理策略,同时会涉及一些复杂拓展图形的认识和快速作图能力。

洛必达法则是高中学的么?你们高考应该不会考吧,还有你的例子看不懂,写在纸上,大家一起讨论下吧。这里我先给你解释下洛必达法则:

洛必达法则是求未定式极限的一种方法,而未定式又分为“0/0”和“无穷/无穷”两种(不是则化成这两种)。洛必达法则就是对这个未定式的分子和分母同时求导,且如果导数的极限存在,那么原函数的极限也存在并且相等!证明方法如下:(设自变量x趋向于某个数值a,分子函数是f,分母是F,f丶F导数都存在,且F的导数不为0)

因为x趋向于a时,f/F的极限与f丶F无关,所以可假设f(a)=F(a)=0

所以f丶F在a的某一领域内连续

设x是该领域内的点,则以x丶a为端点的区间上,由柯西中值定理得:

f/F=[f(x)-f(a)]/[F(x)-F(a)]=f“(e)/F"(e)(e在x丶a之间) 即证

文章标签: # 压轴 # 高考 # 函数