您现在的位置是: 首页 > 教育分析 教育分析

今天数学高考试卷_今天高考数学卷子

tamoadmin 2024-05-16 人已围观

简介2023年安徽省高考数学不难。难度分析:2023年安徽高考数学试卷总体来说不难。从近十年的安徽高考数学试题难度来看,总体上难度呈现逐渐下降趋势。2023安徽高考数学试题难度应该是与2022年保持稳定,基本上难度系数去年相当。安徽高考数学试题题目比较灵活,在需要一些分析和转化的情况下,如果没有底层的思考,没有对知识本质的深刻理解,没有很好的逻辑思维能力和分析解决问题的能力,计算又不稳定,单纯的依靠刷

今天数学高考试卷_今天高考数学卷子

2023年安徽省高考数学不难。

难度分析:

2023年安徽高考数学试卷总体来说不难。从近十年的安徽高考数学试题难度来看,总体上难度呈现逐渐下降趋势。2023安徽高考数学试题难度应该是与2022年保持稳定,基本上难度系数去年相当。

安徽高考数学试题题目比较灵活,在需要一些分析和转化的情况下,如果没有底层的思考,没有对知识本质的深刻理解,没有很好的逻辑思维能力和分析解决问题的能力,计算又不稳定,单纯的依靠刷题,在现在的安徽高考数学试题方向中,是会被淘汰的。

安徽高考模式:

2023安徽高考模式是“3+文科综合/理科综合”的模式。各考6个学科,4种试卷,即报考文科的学生考:语文、数学、英语和文科综合,报考理工科的学生考:语文、数学、英语和理科综合。

2023年安徽省高考文理科录取:

依据志愿设置,文理科录取分本科提前批、高职(专科)提前批、本科第一批、本科第二批、高职(专科)批,共5个批次。

本科提前批分为军事、公安司法(含公安司法国家专项计划)和应急消防、公费师范、优师专项、免费医学定向、农技推广人才定向和其他等类。本科提前批后还单设若干特殊类型招生录取批次,依次分别为国家专项计划、地方专项计划、高校专项计划。

本科第一批平行志愿包含A、B、C、D、E、F六所院校;本科第二批平行志愿包含A、B、C、D、E、F、G、H、I、J十所院校。本科第一、二批的每所院校设6个专业志愿及专业服从志愿。

高职(专科)提前批分为定向培养士官、免费医学定向、公安司法、农技推广人才定向和其他共5类,定向培养士官、免费医学定向、农技推广人才定向实行平行志愿。

设置A、B、C、D、E、F六所院校,每所院校设6个专业志愿(定向培养士官设专业服从,免费医学定向、农技推广人才定向不设专业服从);公安司法和其他类设1个院校志愿,6个专业及专业服从志愿。考生的高职提前批次志愿只可选报一类。

以上数据出自连接安徽。

哥们,数学是文科还是理科啊,怎么不说明白啊!

2012年普通高等学校招生全国统一考试

文科数学

第Ⅰ卷

一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x|x2-x-2<0},B={x|-1<x<1},则

(A)A?B(B)B?A(C)A=B(D)A∩B=?

(2)复数z=-3+i2+i的共轭复数是?

(A)2+i(B)2-i(C)-1+i(D)-1-i

3、在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为?

(A)-1(B)0(C)12(D)1

(4)设F1、F2是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()

(A)12(B)23(C)34(D)45

5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是

(A)(1-3,2)?(B)(0,2)?(C)(3-1,2)(D)(0,1+3)

(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则

(A)A+B为a1,a2,…,aN的和

(B)A+B2为a1,a2,…,aN的算术平均数

(C)A和B分别是a1,a2,…,aN中最大的数和最小的数

(D)A和B分别是a1,a2,…,aN中最小的数和最大的数

(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为

(A)6

(B)9?

(C)12

(D)18

(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为?

(A)6π(B)43π(C)46π(D)63π

(9)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=

(A)π4(B)π3?(C)π2?(D)3π4

(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=43,则C的实轴长为

(A)2?(B)22?(C)4(D)8

(11)当0<x≤12时,4x<logax,则a的取值范围是?

(A)(0,22)(B)(22,1)?(C)(1,2)(D)(2,2)

(12)数列{an}满足an+1+(-1)n?an?=2n-1,则{an}的前60项和为

(A)3690?(B)3660?(C)1845(D)1830

第Ⅱ卷

本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。

二.填空题:本大题共4小题,每小题5分。

(13)曲线y=x(3lnx+1)在点(1,1)处的切线方程为________

(14)等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______

(15)已知向量a,b夹角为45°?,且|a|=1,|2a-b|=10,则|b|=

(16)设函数f(x)=(x+1)2+sinxx2+1的最大值为M,最小值为m,则M+m=____

三、解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)

已知a,b,c分别为△ABC三个内角A,B,C的对边,c?=?3asinC-ccosA

(1) 求A

(2) 若a=2,△ABC的面积为3,求b,c

18.(本小题满分12分)

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。?

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n 14 15 16 17 18 19 20

频数 10 20 16 16 15 13 10

(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。

(19)(本小题满分12分)

如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点

(I)证明:平面BDC1⊥平面BDC

(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比。

(20)(本小题满分12分)

设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点。

(I)若∠BFD=90°,△ABD的面积为42,求p的值及圆F的方程;

(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值。

(21)(本小题满分12分)

设函数f(x)=?ex-ax-2

(Ⅰ)求f(x)的单调区间

(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)?f?(x)+x+1>0,求k的最大值

请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。

(22)(本小题满分10分)选修4-1:几何证明选讲

如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB,证明:?

(Ⅰ)CD=BC;

(Ⅱ)△BCD∽△GBD

(23)(本小题满分10分)选修4—4;坐标系与参数方程

已知曲线C1的参数方程是x=2cosφy=3sinφ(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为(2,π3)

(Ⅰ)求点A、B、C、D?的直角坐标;

(Ⅱ)设P为C1上任意一点,求|PA|?2+?|PB|2?+?|PC|?2+?|PD|2的取值范围。

(24)(本小题满分10分)选修4—5:不等式选讲

已知函数f(x)?=?|x?+?a|?+?|x-2|.

(Ⅰ)当a?=-3时,求不等式f(x)≥3的解集;

(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围。

文章标签: # 高考 # 12 # 志愿