您现在的位置是: 首页 > 教育分析 教育分析
数学必背公式文科高考,高考必备数学基本公式文科
tamoadmin 2024-05-19 人已围观
简介高考数学常用公式1.二次函数的解析式的三种形式 ①一般式 ;② 顶点式 ;③零点式 .设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.2.函数 的图象的对称性:①函数 的图象关于直线 对称 .②函数 的图象关于直线 对称 .3.两个函数图象的对称性:①函数 与函数 的图象关于直线 (即 轴)对称.②函数 与函数 的图象关于直线 对称.③函数 和 的图象关于直线y=x对
高考数学常用公式
1.二次函数的解析式的三种形式 ①一般式 ;② 顶点式 ;③零点式 .
设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
2.函数 的图象的对称性:①函数 的图象关于直线 对称 .②函数 的图象关于直线 对称 .
3.两个函数图象的对称性:①函数 与函数 的图象关于直线 (即 轴)对称.②函数 与函数 的图象关于直线 对称.③函数 和 的图象关于直线y=x对称.
4.分数指数幂 ( ,且 ).
( ,且 ).
5. .
6. ( 数列 的前n项的和为 ).
7.等差数列的通项公式 ;
其前n项和公式 .
8.等比数列的通项公式 ;
其前n项的和公式
9.同角三角函数的基本关系式 , = , .
10.和角与差角公式
;
;
.
= (辅助角 所在象限由点 的象限决定, ).
11.二倍角公式 .
. .
12.三角函数的周期公式 函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
13.正弦定理 .
14.余弦定理 ; ; .
15.面积定理(1) ( 分别表示a、b、c边上的高).
(2) .
16.三角形内角和定理 在△ABC中,有
.
17.平面两点间的距离公式
= (A ,B ).
18.向量的平行与垂直 设a= ,b= ,且b 0,则
a b b=λa .
a b(a 0) a?b=0 .
19.三角形的重心坐标公式 △ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .
20.常用不等式:
(1) (当且仅当a=b时取“=”号).
(2) (当且仅当a=b时取“=”号).
(5)
21.含有绝对值的不等式 当a> 0时,有
.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集
或 .
22.指数不等式与对数不等式 (1)当 时,
; .
(2)当 时,
;
23.斜率公式 ( 、 ).
24.直线的四种方程
(1)点斜式 (直线 过点 ,且斜率为 ).
(2)斜截式 (b为直线 在y轴上的截距).
(3)两点式 ( )( 、 ( )).
(4)一般式 (其中A、B不同时为0).
25.两条直线的平行和垂直 (1)若 ,
① ;② .
(2)若 , ,且A1、A2、B1、B2都不为零,
① ;② ;
26.点到直线的距离 (点 ,直线 : ).
27. 圆的方程
(1)圆的标准方程 .
(2)圆的一般方程 ( >0).
28.直线与圆锥曲线相交的弦长公式 或
(弦端点A ,由方程 消去y得到 , , 为直线 的倾斜角, 为直线的斜率).
29.共线向量定理 对空间任意两个向量a、b(b≠0 ),a‖b 存在实数λ使a=λb.
30.等可能性事件的概率 .
31.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B).
32. 个互斥事件分别发生的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
33.独立事件A,B同时发生的概率P(A?B)= P(A)?P(B).
34.n个独立事件同时发生的概率 P(A1? A2?…? An)=P(A1)? P(A2)?…? P(An).
35.函数 在点 处的导数是曲线 在 处的切线的斜率 ,相应的切线方程是 .
36.几种常见函数的导数
(1) (C为常数). (2) .
(3) . (4) .
(5) ; . (6) ; .
37. .( )
38.复数 的模(或绝对值) = = .
39.复数的四则运算法则
(1) ; (2) ;
(3) ; (4)
对数的性质及推导
用^表示乘方,用log(a)(b)表示以a为底,b的对数
*表示乘号,/表示除号
定义式:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)
推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)
2.
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N) = log(a)(M) - log(a)(N)
4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
其他性质:
性质一:换底公式
log(a)(N)=log(b)(N) / log(b)(a)
推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)
性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n) / ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导 完 )
公式三:
log(a)(b)=1/log(b)(a)
证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1
三角函数的和差化积公式
sinα+sinβ=2sin(α+β)/2·cos(α-β)/2
sinα-sinβ=2cos(α+β)/2·sin(α-β)/2
cosα+cosβ=2cos(α+β)/2·cos(α-β)/2
cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2
三角函数的积化和差公式
sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]
cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)]
cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]
sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]