您现在的位置是: 首页 > 教育改革 教育改革

三胞胎兄弟高考平均超650分,三胞胎高考考出等差数列

tamoadmin 2024-05-26 人已围观

简介1.广东高考数学平均分20232.等差数列的基本公式是什么?3.等差数列的前n项和公式是什么?4.高考等差数列 !!5.等差数列的和公式6.等差数列前n项和是多少?等差数列高考分值20分左右,约占总分的13%。数列是高中数学的主要内容之一,它在每年的高考数学试题中占有相当大的比例。一般安排2-3道题目(1~2道选择或填空小题,1道解答型大题)。选择或填空题的难度控制在中等,答题时一般较容易;而在试

1.广东高考数学平均分2023

2.等差数列的基本公式是什么?

3.等差数列的前n项和公式是什么?

4.高考等差数列 !!

5.等差数列的和公式

6.等差数列前n项和是多少?

三胞胎兄弟高考平均超650分,三胞胎高考考出等差数列

等差数列高考分值20分左右,约占总分的13%。数列是高中数学的主要内容之一,它在每年的高考数学试题中占有相当大的比例。一般安排2-3道题目(1~2道选择或填空小题,1道解答型大题)。选择或填空题的难度控制在中等,答题时一般较容易;而在试题的后半部分安排的1道解答型大题,多为中等偏上乃至较难的题目,它们是高考数学中的热点与难点。

广东高考数学平均分2023

等比数列公式:

1、定义式:

2、求和公式:

3、通项公式:

4、从等比数列的定义、通项公式、前n项和公式可以推出:

等差数列公式:

1、定义式

对于数列若满足:

则称该数列为等差数列。其中,公差d为一常数,n为正整数。

2、通项公式

an=a1+(n-1)*d。首项a1=1,公差d=2。

3、前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2

Sn=[n*(a1+an)]/2

Sn=d/2*n?+(a1-d/2)*n

扩展资料:

等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。

随着房价越来越高,很多人没办法像这样一次性将房款付清,总是要向银行借钱,既可以申请公积金也可以申请银行贷款,但是如果还款到一定时间后想了解自己还得还多少本金时,也可以利用数列来自己计算。

众所周知,按揭贷款(公积金贷款)中一般实行按月等额还本付息。下面就来寻求这一问题的解决办法。

若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元,设第 n 月还款后的本金为 an。

那么有:a1=a0(1+p)-a;a2=a1(1+p)-a;a3=a2(1+p)-a;......an+1=an(1+p)-a,.... 将其变形,得(an+1-a/p)/(an-a/p)=1+p。

由此可见,{an-a/p} 是一个以 a1-a/p 为首项,1+p 为公比的等比数列。

其实类似的还有零存整取、整存整取等银行储蓄借贷,甚至还可以延伸到生物界的细胞细胞分裂。

百度百科-等比数列

百度百科-等差数列公式

等差数列的基本公式是什么?

6月25日11点30分开始查分,广东高考数学平均分2023暂未出。

2023年高考数学全国卷共4套试卷,分别是全国甲卷、全国乙卷、新课标Ⅰ卷、新课标Ⅱ卷,供全国28个省份使用。今年高考命题全面考查数学核心素养,注重发挥数学科在人才选拔中的重要作用。

命题专家告诉记者,高考数学全国卷全面考查数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析的核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥数学科在人才选拔中的重要作用。

高考数学全国卷充分发挥基础学科的作用,突出素养和能力考查,甄别思维品质、展现思维过程,给考生搭就了展示的舞台、发挥的空间,致力于服务人才自主培养质量提升和现代化建设人才选拔。

重点考查逻辑推理素养,如新课标Ⅰ卷第7题以等差数列为材料考查充要条件的推证,要求考生判别充分性和必要性,然后分别进行证明,解决问题的关键是利用等差数列的概念和特点进行推理论证。

新课标Ⅱ卷第11题,其本质是根据一元二次方程根的性质判定方程系数之间的关系,题中函数经过求导以后,其既有极大值又有极小值的性质可以转化为一元二次方程有两个正根。全国乙卷理科第21题要求考生根据参数的性质进行分类推理讨论,考查了思维的条理性、严谨性。

深入考查直观想象素养。如全国甲卷理科第15题要求通过想象与简单计算确定球面与正方体棱的公共点的个数。全国乙卷理科第19题以几何体为依托,考查空间线面关系。

新课标Ⅱ卷第9题以多选题的形式考查圆锥的内容,题目全面考查基础,四个选项设问逐次递进,前面的选项为后面的选项提供了条件,各选项分别考查圆锥的不同性质,互相联系,重点突出。

等差数列的前n项和公式是什么?

等差数列基本公式:?

首项=末项-(项数-1)×公差;末项=首项+(项数-1)×公差?

另外:

项数=(末项-首项)÷公差+1 ;和=(首项+末项)×项数÷2 ;

扩展资料:

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。

通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。

通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。

前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2

Sn=[n*(a1+an)]/2

Sn=d/2*n?+(a1-d/2)*n

注:以上n均属于正整数。

等差数列公式包括:求和、通项、项数、公差......等

百度百科-等差数列公式

高考等差数列 !!

等差数列奇数项和的公式为:S奇=?(a+nd)(n+1)

等差数列偶数项和的公式为:S偶 =(a+nd)n

求和过程为:

设原数列首项为a,公差为d,项数为2n+1项

则原数列依次为:a,a+d,a+2d,a+3d ……. a+2nd

奇数项为:a,a+2d,a+4d …… a+2nd

根据等差数列求和公式:Sn=(首项+末项)*项数÷2

奇数项和为:S奇 = [a + (a+2nd)](n+1)/2 = (a+nd)(n+1)

偶数项为:a+d,a+3d,a+5d …… a+(2n-1)d

偶数项和:S偶 = [(a+d) + (a+2nd-d)]n/2 = (a+nd)n

S奇/S偶 = (n+1)/n?

等差数列是常见数列的一种,可以用AP表示。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均属于正整数。

参考资料:

等差数列求和公式-百度百科

等差数列的和公式

原方程的解即方程x?-2x+m=0与x?-2x+n=0的解

记x1、x2为x?-2x+m=0的根,x3、x4为x?-2x+n=0的根

则有x1+x2=2、x3+x4=2(韦达定理,也可用二次方程通解加出来)

而由题目可知x1、x2、x3、x4可排成等差数列且至少有一个为1/4

由于x1+x2=2、x3+x4=2,有一个为1/4则另一个必为7/4,而另外两个相加仍为2且可放入首项为1/4的等差数列,故必为3/4,5/4

不妨令x1、x2、x3、x4分别等于1/4、7/4、3/4、5/4

则m=7/16,n=15/16

则|m-n|=1/2

变换x1、x2、x3、x4的顺序不会影响结果

等差数列前n项和是多少?

公式为:1+2+3+4+......+n=(n+1)n/2,是等差数列的,累加求和公式。

从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。

等差数列公式其他推论:

1、和=(首项+末项)×项数÷2;

2、项数=(末项-首项)÷公差+1;

3、首项=2x和÷项数-末项或末项-公差×(项数-1);

4、末项=2x和÷项数-首项;

5、末项=首项+(项数-1)×公差;

6、2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。

扩展资料:

等差数列的基本性质:

1、公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。

2、公差为d的'等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。

3、若{an}{bn}为等差数列,则{ an ±bn }与{kan +bn}(k、b为非零常数)也是等差数列。

4、对任何m、n ,在等差数列中有:an = am + (n-m)d(m、n∈N+),特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性。

5、一般地,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq 。

6、公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)。

7、下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。

8、在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。

8、当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。

百度百科-等差数列

方法一:

2+4+6+……+18+20=(2+20)+(4+18)+……+(10+12)=22*5=110

方法二:

等差数列前n项和:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。

将其看作是一个等差数列:s=10*(2+20)/2=110。

扩展资料:

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

参考资料:

等差数列_百度百科

文章标签: # 等差数列 # 公式 # 公差