您现在的位置是: 首页 > 教育改革 教育改革
三角函数的高考大题_三角函数高考大题汇编
tamoadmin 2024-05-29 人已围观
简介1.高考 三角函数题2.就要高考了,可我的三角函数大题还是很有问题!高分追加!3.高考中三角函数大题可以省略求单调区间的步骤吗4.我想问一下高考数学第一题大题目三角函数类的有没有技巧啊?1.tan(A+B)/2=tan(180-C)/2=tan(90-C/2)=cot(c/2)=cos(C/2)/sin(C/2)2sinC=4sin(C/2)cos(C/2)cos(C/2)不为0,故sin(C/2
1.高考 三角函数题
2.就要高考了,可我的三角函数大题还是很有问题!高分追加!
3.高考中三角函数大题可以省略求单调区间的步骤吗
4.我想问一下高考数学第一题大题目三角函数类的有没有技巧啊?
1.tan(A+B)/2=tan(180-C)/2=tan(90-C/2)=cot(c/2)=cos(C/2)/sin(C/2)
2sinC=4sin(C/2)cos(C/2)
cos(C/2)不为0,故sin(C/2)^2=1/4,sin(C/2)=1/2
又C/2<90,C=60
2.正弦定理:AB/sinC=BC/sinA=AC/sinB=周长/(sinA+sinB+sinC)=2/根3
又sinA+sinB+sinC=sinA+sin(120-A)+根3/2=3/2sinA+根3/2cosA+根3/2=根3cos(A-60)+根3/2 *
其中0<A<120,所以1/2<cos(A-60)<=1,
所以2<周长<= 3
别想太多了,祝高考顺利啊!
高考 三角函数题
解题技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方差、标准差公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
5.注意计数时利用列举、树图等基本方法;
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式;
9.注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3.战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2.注意最后一问有应用前面结论的意识;
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6.整体思路上保6分,争10分,想14分。
解题思想
1.函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2.数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数*算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
就要高考了,可我的三角函数大题还是很有问题!高分追加!
第3题这种类型的题的解法是:
把sinxcosx化成sinx+cosx的形式,然后设sinx+cosx=t,再根据t的范围求解函数的最值,如下:
设t=sinx+cosx
那么t=sinx+cosx
=√2[(√2/2)sinx+(√2/2)cosx]
=√2[cos(π/4)sinx+sin(π/4)cosx]
=√2sin(x+π/4)
∴t∈[-√2,√2]
又∵t?=(sinx+cosx)?
=sin?x+2sinxcosx+cos?x
=1+2sinxcosx
∴sinxcosx=(t?-1)/2
∴y=[(t?-1)/2]+t,t∈[-√2,√2]
抛物线y的对称轴是t=-1
∴t=-1时y(min)=-1;t=√2时y(max)=(√2)+1/2
或者化成完全平方加一个常数的形式:y=(1/2)(t+1)?-1来计算也很容易。
括号打的有点多,怕你误解,相信以你的水平也不会,肯定能看懂的是吧!
总之,对于三角函数的计算要把公式与公式的转化运用的非常熟练,另外做过的题一定要看到题就想到思路,不要过一段时间再回来做就忘的差不多了那样的,到高考会很纠结的。
还有一种解法是求导,不知你们现在高中学了没,反正我们那时候好像没学过积的导数,三角函数的导数公式忘了学过没。。。(sinx)'=cosx;(cosx)'=-sinx
方法如下:(积的导数公式:(uv)'=u'×v+u×v',其中u,v都是x的函数)
y'=(sinx)'cosx+sinx(cosx)'+(sinx)'+(cosx)'
=cos?x-sin?x+cosx-sinx
=(cosx-sinx)(cosx+sinx+1)
=√2cos(x+π/4)[√2sin(x+π/4)+1]
令y'=0,得cos(x+π/4)=0或√2sin(x+π/4)+1=0
得x+π/4=(2m+1)π或x=(2k-1/2)π±π/4
再代入求最值,当然这个比较麻烦点,在某些场合用导数会更简便。
对于三角函数,不到万不得已不要用万能公式,另外你们应该也做过用万能公式的题,也就那些题型记住就行了,其他的看着办。
第5题,看来你基础知识没学好,把高一第一册课本的奇偶函数那一节翻出来看是怎么定义的!
奇函数可以这么理解:定义域关于原点对称,函数图象关于原点对称,对于三角函数来说,在定义域关于原点对称的基础上,只要函数过原点,也就是把点(0,0)代入可以使方程成立那么就是奇函数。
相应地,偶函数是定义域关于原点对称,函数图象关于y轴对称的函数。对于三角函数来说,定义域关于原点对称的基础上,x=0是函数的一个极值点就是偶函数,也就是在图象上x=0的点是最高点或者最低点,或者在x=0处的导数等于0,都是可以用来判定的。
你这个例子,你们老师说把它当整体看,是说括号内整体等于t,那么t=0时cosx取最大值,但是此时x=-9π/4≠0,也就是说x和t不是同一个概念,x=-9π/4才是f(x)的对称轴。反过来看,当x=0时t=9π/2,f(0)=0,也就是过原点,是奇函数。
你所认为的cosx是偶函数,是标准的余弦函数,也就是不平移,不伸缩,但是f(x)是在cosx的基础上平移和伸缩了的,当你把cosx向右平移π/2时就变成了sinx的标准情况,也就是y=cos(x-π/2)是奇函数,所以不能笼统的说以cos开头的函数就是偶函数,还是得求对称轴的。
其他的题应该是比较简单的,我有时间再算,挺忙的。有不懂的再留言!
希望能给你带来帮助。
高考中三角函数大题可以省略求单调区间的步骤吗
三角函数的题目主要是高考的第一个大题,整体难度低,得分率很高,所以就是老师说的太简单跳过了....
突破这类题目的方法其实有很多,因为这种题目的题型十分固定,内容基本固定在三角函数部分的诱导公式,和差角公式,倍角公式,升降幂和正余弦定理的应用时最常考察的点
这类题目的突破方法就是从等式入手去找突破口,通常题目都会给你一个等式,那么这个等式通常就会有三种情况,纯粹边的等式,纯粹角的等式以及边角混合的等式,那么这里一定要把握的原则就是你所能够利用的等式一定要么全是边,要么全是三角函数之间的关系,而不是混乱的,所以只需要把边角混合的等式化成全是边或者全是角的就可以
这里就有两个技巧,把边换成角的时候用正弦定理
把角换成边的时候通常用正弦和余弦定理
之后就是相应的化简了
这里还有一个小注意,就是一般情况下,有两个十分重要的隐含条件,一个是正弦的平方加余弦的平方等于1;另一个是三角形内角和等于180,所以经常会把1换成两个平方的和,以及经常把角C化成π-(A+B)等
就这么多技巧,这个题目不难,有了这个题目你能得110左右的话说明你的数学还有些功底,加油哦!希望能帮助到你,
PS:好累,纯粹手打,不足之处,见谅
我想问一下高考数学第一题大题目三角函数类的有没有技巧啊?
最好较简略地写一下,如f(x)=2sin(2x+π/3),可以写2kπ-π/2<2x+π/3<2kπ+π/2,得单调递增区间为( , )
在高考的答题中,要注意详略得当,不要太简,也不要太噜苏。
最基本的就是掌握基本函数之间的运算公式咯,这个不用说你也知道的,然后学会正确的做图,判断好区间和积分的范围,必要的时候引入自定义函数特征函数等,总之函数的题出的比较活,要学会分类转换
奇变偶不变,符号看象限。例:sin(π-x)由于π是π/2的偶数倍 所以可化为sinx 若为π/2的奇数倍 则sin化为cos 符号问题sin π-x 将x看为锐角则π-x在第二象限 sin在一,二象限为正 所以化为正的sinx ,cos在一,四象限为正,转化规则同上