您现在的位置是: 首页 > 教育改革 教育改革
高考数学2017二卷,2017高考数学题全国二卷及答案
tamoadmin 2024-07-08 人已围观
简介1.2017年数学高考卷子的六道大题2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。2017年江苏数学试卷在“稳中求进”中具体知识点有变化。1.体现新课标理念,实现平稳过渡。试卷紧扣江苏考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。对传统内容的考查在保持平稳的基础上进行了适度创新。如第7题首次考查几
1.2017年数学高考卷子的六道大题
2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。2017年江苏数学试卷在“稳中求进”中具体知识点有变化。
1.体现新课标理念,实现平稳过渡。试卷紧扣江苏考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。对传统内容的考查在保持平稳的基础上进行了适度创新。如第7题首次考查几何概型概率问题。
2.关注通性通法。试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求。 如第17题解析几何考查两直线交点以及点在曲线上。第20题以极值为载体考查根与系数关系、三次方程因式分解。第19题以新定义形式多层次考查等差数列定义。
3.体现数学应用,关注社会生活。第10题以实际生活中运费、存储费用为背景的基本不等式求最值问题,第18题以常见的正四棱柱和正四棱台为背景的解三角形问题,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。
4.附加题部分,前四道选做题对知识点的考查单一,方法清晰,学生入手较易。两道必做题一改常规,既考查空间向量在立体几何中应用,又考查概率分布与期望值,既考查运算能力,又考查思维能力。
2017年数学高考卷子的六道大题
数学是很多人的一个难题,下面是我整理的一些蒙题技巧,希望能对大家有所帮助。
高考数学蒙题技巧守则
1、答案有根号的,不选
2、答案有1的,选
3、三个答案是正的时候,在正的中选
4、有一个是正X,一个是负X的时候,在这两个中选
我推荐: 2017年高考全国二卷文科数学答题模板
5、题目看起来数字简单,那么数学答案选复杂的,反之亦然
6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条
7、数学答题答得好,全靠眼睛瞟
8、以上都不实用的时候选B
高考数学蒙题技巧数学函数法,这个就是要把一些计算转化为函数,首先带入答案,之后移项,把方程一边变成零,然后就可以把函数的表达式大概画出来,看与零点有没有唯一焦点,这样就可以大概判断答案,或者找最接近零点的答案!
数学经验法:在数学排序或者有规律的题目也使用。首先比如求三角形面积。你看答案里a:12,b,13,c:6,d:11.第一,12,13,11明显是拼凑的错误答案。第二肯定有陷阱是三角形面积忘记除以2,所以c的答案正确率高。
代入法,这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。b大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。但是如果是选择题,你可以取a=0.5,b=1.5试一试。还有就是可以把选项里的答案带到题目中的式子来计算。
高三数学怎么复习数学的基础知识理解与掌握,基本的数学解题思路分析与数学方法的运用,是第一轮复习的重中之重。对知识点进行梳理,形成完整的知识体系,确保基本概念、公式等牢固掌握。要扎扎实实,对每个知识点都要理解透彻,明确它们要求以及与其他知识之间的联系。
复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径,要做到“两先两后”,即先预习后听课,先复习后作业。以提高听课的主动性,减少听课的盲目性。
而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。预习还可以培养自己的自学能力。
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)?讨论的单调性;
(2)?若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.