您现在的位置是: 首页 > 教育改革 教育改革
高考理科数学难题分析_高考理科数学难题
tamoadmin 2024-07-15 人已围观
简介1.高中数学难题学习2.高考数学很难吗?3.2010年高考全国一卷理科数学难吗4.广东高考理科哪本书最难,数学,物理,化学,生物,每科的最难内容以及最难课本(必修几/选修几)5.今年四川高考数学难度如何6.2023海南高考数学难吗7.高考文科数学难还是理科数学难?8.2010全国一卷高考数学难吗? 普通高等学校招生全国统一考试由 教育 部统一调度,各省级招生考试委员会负责执行和管理。下面是我给
1.高中数学难题学习
2.高考数学很难吗?
3.2010年高考全国一卷理科数学难吗
4.广东高考理科哪本书最难,数学,物理,化学,生物,每科的最难内容以及最难课本(必修几/选修几)
5.今年四川高考数学难度如何
6.2023海南高考数学难吗
7.高考文科数学难还是理科数学难?
8.2010全国一卷高考数学难吗?
普通高等学校招生全国统一考试由 教育 部统一调度,各省级招生考试委员会负责执行和管理。下面是我给大家带来的2022年全国乙卷高考数学(理科)试卷,希望能够帮到你哟!
2022年全国乙卷高考数学(理科)试卷
考生应该如何攻克高考数学压轴题
首先同学们要正确认识压轴题
压轴题主要出在函数,解几,数列三部分内容,一般有三小题。记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
第二重要心态:千万不要分心
其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。高考时,你是不可能这么想的.。你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想最后一道题目难不难?不知道能不能做出来我要不要赶快看看最后一题,做不出就去检查前面题目前面不知道做的怎样,会不会粗心错这就是影响你解题的分心,这些就使你不专心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
第三重要心态:重视审题
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
怎样提高理科数学成绩
备考的方向。很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永远都做不完题,结果是成绩没有提升上去。那么这个方向,当然也有一些考生走向了另一个极端,不喜欢做题甚至很少做题,这些考生有的觉得自己很聪明,应该能学好理科,特别是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。
训练方式。备考中学习和考试其实既有区别又有联系,现实中学习努力的考生有的不一定会考试,会考试的学生不一定努力学习。当然前者远远多于后者。无论是会考试还是不会考试的学生,要想把试考好,对于绝大多数考生来讲,还是需要合理的训练,例如说数学学科来说,你需要在平时训练中注重这些关键词:时间分配、正确率、题型以及相关的解题 方法 、步骤等等。很多学生没有训练的目标,甚至一些考生做题的目标仅仅是为了完成老师布置的作业,这样训练方式肯定很难让自己的成绩提升上去。
教师教学等客观原因。在 毕业 班中老师重视成绩优秀的考生是普遍的现象,当然如果面对一些平时努力学习,成绩没有提升的同学,作为老师肯定要给学生们出谋划策,帮他们做改变,把成绩提升上去,同时现实中也并非所有老师都能这样去做,有的老师精力也不允许。但是无论怎样,考生成绩上不去,帮他们提升成绩更是老师的责任。如果我带一个班级的学生,肯定不会一刀切去布置作业,让每一个学生都按照同样的模式去走,要根据他们的实际需要,给出建议和方向。还是那句话,很多时候学习数学不是你做了多少题而是做了多少有效的题。
2022年全国乙卷高考数学(理科)试卷相关 文章 :
★ 2022年全国乙卷高考作文范文及点评
★ 2022全国高考试卷分几类
★ 2022高考甲卷数学真题试卷及答案
★ 2022全国各省市高考使用全国几卷
★ 2022高考数学卷分数分布一览
★ 2022高考全国乙卷政治卷真题及答案
★ 2022全国甲卷文科数学卷试题及答案一览
★ 2017年高考使用新课标全国卷省份的名单
★ 2022高考数学大题题型总结
★ 2022高考全国甲卷数学试题及答案
高中数学难题学习
希望能帮到你,
绝密*启用前2012年普通高等学校招生全国统一考试理科数学
注息事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动.用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效.
3.回答第Ⅱ卷时。将答案写在答题卡上.写在本试卷上无效·
4.考试结束后.将本试卷和答且卡一并交回。
第一卷
一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 ;,则 中所含元素
的个数为( )
解析选
, , , 共10个
(2)将 名教师, 名学生分成 个小组,分别安排到甲、乙两地参加社会实践活动,
每个小组由 名教师和 名学生组成,不同的安排方案共有( )
种 种 种 种
解析选
甲地由 名教师和 名学生: 种
(3)下面是关于复数 的四个命题:其中的真命题为( )
的共轭复数为 的虚部为
解析选
, , 的共轭复数为 , 的虚部为
(4)设 是椭圆 的左、右焦点, 为直线 上一点,
是底角为 的等腰三角形,则 的离心率为( )
解析选
是底角为 的等腰三角形
(5)已知 为等比数列, , ,则 ( )
解析选
, 或
(6)如果执行右边的程序框图,输入正整数 和
实数 ,输出 ,则( )
为 的和
为 的算术平均数
和 分别是 中最大的数和最小的数
和 分别是 中最小的数和最大的数
解析选
(7)如图,网格纸上小正方形的边长为 ,粗线画出的
是某几何体的三视图,则此几何体的体积为( )
解析选
该几何体是三棱锥,底面是俯视图,高为
此几何体的体积为
(8)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于
两点, ;则 的实轴长为( )
解析选
设 交 的准线 于
得:
(9)已知 ,函数 在 上单调递减。则 的取值范围是( )
解析选
不合题意 排除
合题意 排除
另: ,
得:
(10)已知函数 ;则 的图像大致为( )
解析选
得: 或 均有 排除
(11)已知三棱锥 的所有顶点都在球 的求面上, 是边长为 的正三角形,
为球 的直径,且 ;则此棱锥的体积为( )
解析选
的外接圆的半径 ,点 到面 的距离
为球 的直径 点 到面 的距离为
此棱锥的体积为
另: 排除
(12)设点 在曲线 上,点 在曲线 上,则 最小值为( )
解析选
函数 与函数 互为反函数,图象关于 对称
函数 上的点 到直线 的距离为
设函数
由图象关于 对称得: 最小值为
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分。
(13)已知向量 夹角为 ,且 ;则
解析
(14) 设 满足约束条件: ;则 的取值范围为
解析 的取值范围为
约束条件对应四边形 边际及内的区域:
则
(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3
正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从
正态分布 ,且各个元件能否正常相互独立,那么该部件的使用寿命
超过1000小时的概率为
解析使用寿命超过1000小时的概率为
三个电子元件的使用寿命均服从正态分布
得:三个电子元件的使用寿命超过1000小时的概率为
超过1000小时时元件1或元件2正常工作的概率
那么该部件的使用寿命超过1000小时的概率为
(16)数列 满足 ,则 的前 项和为
解析 的前 项和为
可证明:
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知 分别为 三个内角 的对边,
(1)求 (2)若 , 的面积为 ;求 。
解析(1)由正弦定理得:
(2)
解得: (l fx lby)
18.(本小题满分12分)
某花店每天以每枝 元的价格从农场购进若干枝玫瑰花,然后以每枝 元的价格出售,
如果当天卖不完,剩下的玫瑰花作垃圾处理。
(1)若花店一天购进 枝玫瑰花,求当天的利润 (单位:元)关于当天需求量
(单位:枝, )的函数解析式。
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率。
(i)若花店一天购进 枝玫瑰花, 表示当天的利润(单位:元),求 的分布列,
数学期望及方差;
(ii)若花店一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?
请说明理由。
解析(1)当 时,
当 时,
得:
(2)(i) 可取 , ,
的分布列为
(ii)购进17枝时,当天的利润为
得:应购进17枝
(19)(本小题满分12分)
如图,直三棱柱 中, ,
是棱 的中点,
(1)证明:
(2)求二面角 的大小。
解析(1)在 中,
得:
同理:
得: 面
(2) 面
取 的中点 ,过点 作 于点 ,连接
,面 面 面
得:点 与点 重合
且 是二面角 的平面角
设 ,则 ,
既二面角 的大小为
(20)(本小题满分12分)
设抛物线 的焦点为 ,准线为 , ,已知以 为圆心,
为半径的圆 交 于 两点;
(1)若 , 的面积为 ;求 的值及圆 的方程;
(2)若 三点在同一直线 上,直线 与 平行,且 与 只有一个公共点,
求坐标原点到 距离的比值。
解析(1)由对称性知: 是等腰直角 ,斜边
点 到准线 的距离
圆 的方程为
(2)由对称性设 ,则
点 关于点 对称得:
得: ,直线
切点
直线
坐标原点到 距离的比值为 。(lfx lby)
(21)(本小题满分12分)
已知函数 满足满足 ;
(1)求 的解析式及单调区间;
(2)若 ,求 的最大值。
解析(1)
令 得:
得:
在 上单调递增
得: 的解析式为
且单调递增区间为 ,单调递减区间为
(2) 得
①当 时, 在 上单调递增
时, 与 矛盾
②当 时,
得:当 时,
令 ;则
当 时,
当 时, 的最大值为
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,
做答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图, 分别为 边 的中点,直线 交
的外接圆于 两点,若 ,证明:
(1) ;
(2)
解析(1) ,
(2)
(23)本小题满分10分)选修4—4;坐标系与参数方程
已知曲线 的参数方程是 ,以坐标原点为极点, 轴的正半轴
为极轴建立坐标系,曲线 的坐标系方程是 ,正方形 的顶点都在 上,
且 依逆时针次序排列,点 的极坐标为
(1)求点 的直角坐标;
(2)设 为 上任意一点,求 的取值范围。
解析(1)点 的极坐标为
点 的直角坐标为
(2)设 ;则
(lfxlby)
(24)(本小题满分10分)选修 :不等式选讲
已知函数
(1)当 时,求不等式 的解集;
(2)若 的解集包含 ,求 的取值范围。
解析(1)当 时,
或 或
或
(2)原命题 在 上恒成立
在 上恒成立
在 上恒成立
2012年高考文科数学试题解析(全国课标)
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则
(A)AB (B)BA (C)A=B (D)A∩B=?
命题意图本题主要考查一元二次不等式解法与集合间关系,是简单题.
解析A=(-1,2),故BA,故选B.
(2)复数z= 的共轭复数是
(A) (B) (C) (D)
命题意图本题主要考查复数的除法运算与共轭复数的概念,是简单题.
解析∵ = = ,∴ 的共轭复数为 ,故选D.
(3)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线 y=x+1上,则这组样本数据的样本相关系数为
(A)-1 (B)0 (C) (D)1
命题意图本题主要考查样本的相关系数,是简单题.
解析有题设知,这组样本数据完全正相关,故其相关系数为1,故选D.
(4)设 , 是椭圆 : =1( > >0)的左、右焦点, 为直线 上一点,△ 是底角为 的等腰三角形,则 的离心率为
. . . .
命题意图本题主要考查椭圆的性质及数形结合思想,是简单题.
解析∵△ 是底角为 的等腰三角形,
∴ , ,∴ = ,∴ ,∴ = ,故选C.
(5)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则 的取值范围是
(A)(1-,2) (B)(0,2)
(C)(-1,2) (D)(0,1+)
命题意图本题主要考查简单线性规划解法,是简单题.
解析有题设知C(1+ ,2),作出直线 : ,平移直线 ,有图像知,直线 过B点时, =2,过C时, = ,∴ 取值范围为(1-,2),故选A.
(6)如果执行右边的程序框图,输入正整数 ( ≥2)和实数 , ,…, ,输出 , ,则
. + 为 , ,…, 的和
. 为 , ,…, 的算术平均数
. 和 分别为 , ,…, 中的最大数和最小数
. 和 分别为 , ,…, 中的最小数和最大数
命题意图本题主要考查框图表示算法的意义,是简单题.
解析由框图知其表示的算法是找N个数中的最大值和最小值, 和 分别为 , ,…, 中的最大数和最小数,故选C.
21世纪教育网(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为
.6 .9 .12 .18
命题意图本题主要考查简单几何体的三视图及体积计算,是简单题.
解析由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为 =9,故选B.
(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为
(A)π (B)4π (C)4π (D)6π
命题意图
解析
(9)已知 >0, ,直线 = 和 = 是函数 图像的两条相邻的对称轴,则 =
(A) (B) (C) (D)
命题意图本题主要考查三角函数的图像与性质,是中档题.
解析由题设知, = ,∴ =1,∴ = ( ),
∴ = ( ),∵ ,∴ = ,故选A.
(10)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 、 两点, = ,则 的实轴长为
. . .4 .8
命题意图本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.
解析由题设知抛物线的准线为: ,设等轴双曲线方程为: ,将 代入等轴双曲线方程解得 = ,∵ = ,∴ = ,解得 =2,
∴ 的实轴长为4,故选C.
(11)当0< ≤时, ,则a的 取值范围是
(A)(0,) (B)(,1) (C)(1,) (D)(,2)
命题意图本题主要考查指数函数与对数函数的图像与性质及数形结合思想,是中档题.
解析由指数函数与对数函数的图像知 ,解得 ,故选A.
(12)数列{ }满足 ,则{ }的前60项和为
(A)3690 (B)3660 (C)1845 (D)1830
命题意图本题主要考查灵活运用数列知识求数列问题能力,是难题.
解析法1有题设知
=1,① =3 ② =5 ③ =7, =9,
=11, =13, =15, =17, =19, ,
……
∴②-①得 =2,③+②得 =8,同理可得 =2, =24, =2, =40,…,
∴ , , ,…,是各项均为2的常数列, , , ,…是首项为8,公差为16的等差数列,
∴{ }的前60项和为 =1830.
法2可证明:
二.填空题:本大题共4小题,每小题5分。
(13)曲线 在点(1,1)处的切线方程为________
命题意图本题主要考查导数的几何意义与直线方程,是简单题.
解析∵ ,∴切线斜率为4,则切线方程为: .
(14)等比数列{ }的前n项和为Sn,若S3+3S2=0, 则公比 =_______
命题意图本题主要考查等比数列n项和公式,是简单题.
解析当 =1时, = , = ,由S3+3S2=0得 , =0,∴ =0与{ }是等比数列矛盾,故 ≠1,由S3+3S2=0得 , ,解得 =-2.
(15) 已知向量 , 夹角为 ,且| |=1,| |= ,则| |= .
命题意图.本题主要考查平面向量的数量积及其运算法则,是简单题.
解析∵| |= ,平方得 ,即 ,解得| |= 或 (舍)
(16)设函数 =的最大值为M,最小值为m,则M+m=____
命题意图本题主要考查利用函数奇偶性、最值及转换与化归思想,是难题.
解析 = ,
设 = = ,则 是奇函数,
∵ 最大值为M,最小值为 ,∴ 的最大值为M-1,最小值为 -1,
∴ , =2.
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知 , , 分别为 三个内角 , , 的对边, .
(Ⅰ)求 ;
(Ⅱ)若 =2, 的面积为 ,求 , .
命题意图本题主要考查正余弦定理应用,是简单题.
解析(Ⅰ)由 及正弦定理得
由于 ,所以 ,
又 ,故 .
(Ⅱ) 的面积 = = ,故 =4,
而 故 =8,解得 =2.
18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天 玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
(i)设花店在这100天内每天购进17枝玫瑰花,求这100天 的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
命题意图本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥的和概率,是简单题.
解析(Ⅰ)当日需求量 时,利润 =85;
当日需求量 时,利润 ,
∴ 关于 的解析式为 ;
(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为
=76.4;
(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为
(19)(本小题满分12分)如图,三棱柱 中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
(I) 证明:平面 ⊥平面
(Ⅱ)平面 分此棱柱为两部分,求这两部分体积的比.
命题意图本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.
解析(Ⅰ)由题设知BC⊥ ,BC⊥AC, ,∴ 面 , 又∵ 面 ,∴ ,
由题设知 ,∴ = ,即 ,
又∵ , ∴ ⊥面 , ∵ 面 ,
∴面 ⊥面 ;
(Ⅱ)设棱锥 的体积为 , =1,由题意得, = = ,
由三棱柱 的体积 =1,
∴ =1:1, ∴平面 分此棱柱为两部分体积之比为1:1.
(20)(本小题满分12分)设抛物线 : ( >0)的焦点为 ,准线为 , 为 上一点,已知以 为圆心, 为半径的圆 交 于 , 两点.
(Ⅰ)若 , 的面积为 ,求 的值及圆 的方程;
(Ⅱ)若 , , 三点在同一条直线 上,直线 与 平行,且 与 只有一个公共点,求坐标原点到 , 距离的比值.
命题意图本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
解析设准线 于 轴的焦点为E,圆F的半径为 ,
则|FE|= , = ,E是BD的中点,
(Ⅰ) ∵ ,∴ = ,|BD|= ,
设A( , ),根据抛物线定义得,|FA|= ,
∵ 的面积为 ,∴ = = = ,解得 =2,
∴F(0,1), FA|= , ∴圆F的方程为: ;
(Ⅱ) 解析1∵ , , 三点在同一条直线 上, ∴ 是圆 的直径, ,
由抛物线定义知 ,∴ ,∴ 的斜率为 或- ,
∴直线 的方程为: ,∴原点到直线 的距离 = ,
设直线 的方程为: ,代入 得, ,
∵ 与 只有一个公共点, ∴ = ,∴ ,
∴直线 的方程为: ,∴原点到直线 的距离 = ,
∴坐标原点到 , 距离的比值为3.
解析2由对称性设 ,则
点 关于点 对称得:
得: ,直线
切点
直线
坐标原点到 距离的比值为 。
(21)(本小题满分12分)设函数f(x)= ex-ax-2
(Ⅰ)求f(x)的单调区间
(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f?(x)+x+1>0,求k的最大值
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.
22. (本小题满分10分)选修4-1:几何选讲
如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:
(Ⅰ) CD=BC;
(Ⅱ)△BCD∽△GBD.
命题意图本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.
解析(Ⅰ) ∵D,E分别为AB,AC的中点,∴DE∥BC,
∵CF∥AB, ∴BCFD是平行四边形,
∴CF=BD=AD, 连结AF,∴ADCF是平行四边形,
∴CD=AF,
∵CF∥AB, ∴BC=AF, ∴CD=BC;
(Ⅱ) ∵FG∥BC,∴GB=CF,
由(Ⅰ)可知BD=CF,∴GB=BD,
∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD.
23. (本小题满分10分)选修4-4:坐标系与参数方程
已知曲线 的参数方程是 ( 是参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线 :的极坐标方程是 =2,正方形ABCD的顶点都在 上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2, ).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为 上任意一点,求 的取值范围.
命题意图本题考查了参数方程与极坐标,是容易题型.
解析(Ⅰ)由已知可得 , ,
, ,
即A(1, ),B(- ,1),C(―1,― ),D( ,-1),
(Ⅱ)设 ,令 = ,
则 = = ,
∵ ,∴ 的取值范围是[32,52].
24.(本小题满分10分)选修4-5:不等式选讲
已知函数 = .
(Ⅰ)当 时,求不等式 ≥3的解集;
(Ⅱ) 若 ≤ 的解集包含 ,求 的取值范围.
命题意图本题主要考查含绝对值不等式的解法,是简单题.
解析(Ⅰ)当 时, = ,
当 ≤2时,由 ≥3得 ,解得 ≤1;
当2< <3时, ≥3,无解;
当 ≥3时,由 ≥3得 ≥3,解得 ≥8,
∴ ≥3的解集为{ | ≤1或 ≥8};
(Ⅱ) ≤ ,
当 ∈[1,2]时, = =2,
∴ ,有条件得 且 ,即 ,
故满足条件的 的取值范围为[-3,0].
高考数学很难吗?
数学的学习属理科,是长期训练的结果。
学会解题思路,分析问题的方法。
一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,取一些具体的措施
记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
2010年高考全国一卷理科数学难吗
高考数学难度相对较高。
高考数学难度因地区和年份而异,通常分为文理两个类别,难度层次分为基础、中等和较难三个级别。基础题主要考查基本数学知识和运算能力,中等题需要综合运用,较难题需要深入思考和分析。对于大多数学生来说,高考数学试卷确实是相对较难的。
这是因为高考数学试卷注重知识点的综合运用,需要学生具备较强的思维能力和解题能力。此外,高考数学试卷还会涉及到一些较为复杂的数学概念和技巧,这对于一些初学者来说是比较困难的。
除了基础知识外,高考数学还要求考生具有较强的计算能力和解决问题的能力。在解题过程中,考生需要能够灵活运用各种数学思想和解题方法,如代数、几何、概率、统计等,以及具备较高的逻辑推理和思维转换能力。
此外,高考数学试卷中还可能会出现一些陷阱题,考查考生的细心和耐心,对考生的思维敏捷性和准确性也提出了较高的要求。
总的来说,高考数学难度较高,需要考生具备较为扎实的基础知识、灵活的解题能力和高度的细心耐心,才能够顺利应对。考生在备考过程中,需要通过多练习、多思考和总结,不断提高自己的数学能力和解题能力。
同时,考生还需要注重时间的合理分配和心态调整,在考试中保持冷静、自信和专注,充分发挥自己的水平。
针对高考数学,以下是一些答题技巧:
1.基础题优先:在时间有限的情况下,优先解答基础题,以稳定发挥,确保拿到基础分。
2.难题适度放弃:如果遇到难题,可以适度放弃,不要浪费过多时间。这样可以留出时间来检查已经做过的题目,确保不会因为时间不足而出现错误。
3.解答题序合理:合理安排时间,将题目按照难度和类型进行排序。一般来说,选择题和填空题应该先做,解答题应该后做。
4.答题速度稳定:控制答题速度,保持稳定的速度,避免时快时慢。这有助于稳定发挥,提高答题效率。
5.学会检查:高考数学考试结束后,要立即检查已经做过的题目,尤其是计算题。检查时可以运用排除法、特殊值法等技巧,确保不会因为疏忽大意而犯错。
6.注重细节:在答题过程中,要注重细节,避免因为粗心而犯错。例如,要注意符号、大小写等细节,避免因为这些细节问题而失分。
广东高考理科哪本书最难,数学,物理,化学,生物,每科的最难内容以及最难课本(必修几/选修几)
孟祥飞:全国卷出来了,我大概看了一下,整体感觉全国卷这个试卷出的还是很好的,考察都是主干知识,没有一些偏题,比较怪的知识。区分度还是比较大的,我们说什么样的试卷叫好的试卷,有梯度,有些同学程度特别好的可能全都做出来,如果程度不是很好的学生,可能什么都不会做,能做出一问或者几个关键步骤,所以整体试卷考察的是主干知识,入口相对比较宽,很多同学都可以顺利地进入这个题目,但是想出来还是感觉有一点困难,因为这个题目收尾的时候或者某些障碍设置上比较巧妙,可能还是侧重考察这个数学思维。感觉整个试卷还是比较好,难度相对比较适中,有区分度,入口比较宽,还是比较适合做高考试题的。
今年四川高考数学难度如何
其实难不难要看个人的!
数学:必修4&5是重点,三角函数一定要学透;
选修2-1的内容会出一道中等偏难的大;
选修2-3排列组合的内容较难,但是一般题目很简单;
对于空间想象力较弱的同学来说还有——必修2
(但是不要灰心,能懂多少听多少,到后期掌握了用向量的方法就会觉得简单很多)
选修2-2 导数 用心听课背公式多做题 就可以轻松拿到送分题了
物理选修内容较多连贯性强,不要混淆就好 个人觉得电学的题比力学题好拿分
化学 反应原理延伸的知识较多,有机要勤记
生物是最好学的一科了,但是不好考。个人认为理综靠生物吃饭的同学,请不要放太多筹码在这一科上。
必修2遗传学最好预习了再听课
如果必修2学得好能让人充满信心学生物,但不要骄傲,选修3也很难。
2023海南高考数学难吗
今年四川高考数学难度如何:难度适中。
四川高考难度是噩梦水平,高考难度全国排名第7。2023四川高考用全国甲卷,满分是750分,四川高考用传统高考文理科模式。
四川虽然好大学有不少,但考生有70万,全国排名靠前。因此在四川高考并不是容易的事情,不过好在四川本地还有川大、成电、西南财经等好的高校,整体录取人数也还过得去。
2022年四川省高考报名人数为77万人,实际参加考试人数57.56万人。2022四川高考本科录取率33%。2022四川高考一本录取率17.72%。2022四川高考211录取率4.44%。2022四川高考985录取率1.47%。2022四川一本上线率17.72%。
从四川高考试题难度上看,在考查学生学习能力的同时,更考查学生对知识的应用能力,既考查学生的基本功,又考查学生随机应变的能力,因此,整体来看,未来一段时间四川高考难度不会有太大的变化。
高考考试答题技巧:
1、通览全卷,迅速摸透题情刚拿到试卷,一般心情比较紧张,建议拿到卷子以后看一下,看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服前面难题做不出,后面易题没时间做的有效措施,也从根本上防止了漏做题。
2、答题顺序:从卷首依次开始一般地讲,全卷大致是先易后难的排列,所以,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。
但也不是坚决地依次做题,一份高考试卷,虽然大致是先易后难,但试卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先做好有保证的题,才能尽量多得分。
3、答题策略:先易后难、先熟后生。先做简单题、熟悉的题,再做综合题、难题。应根据自己的实际,果断跳过啃不动的题目,从易到难,可以增强信心,但也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
高考文科数学难还是理科数学难?
2023海南高考数学难。
2023海南高考数学还是比较难的,虽然考的内容非常基础,但是题目创新性非常高,这给很多考生带来了不小的压力。
高考试卷难度单单从试卷的试题本身来说,这个和每个人的知识点掌握程度和擅长的题目类型有关系,还和个人的临场发挥有关联,高考考生现场状态非常重要。
高考数学复习技巧
一、紧跟老师的节奏
基本上学校老师都已经安排好了学生的复习进程,包括第一轮总复习、第二轮总复习、冲刺复习等。每一个复习阶段都有其作用,比如第一轮复习注重基础,而最后冲刺阶段会进行一些押题。
在复习时学生应该紧跟老师的节奏千万不能开小差,如果在基础复习时没有认真巩固之前的基础知识,那么之后复习需要用到这些知识的时候学生大脑一片空白,那复习也就失去了意义。
二、不要只顾难题
数学复习时进行习题练习,许多学生都会犯一个错误,那就是过于重视难题的练习而忽略基础题。要知道,在整个卷面分值来说基础题分值会占到70%,只顾复习难题而忽略基础题复习反而得不偿失。数学复习做习题练习时时应该将基础题型熟练掌握,先拿到这些基础分再考虑难题练习提高得分上限。
三、及时查漏补缺,弥补弱势项
数学试卷涉及的高中数学知识十分全面,但是学生不一定能够全面掌握这些数学知识,有不少学生都存在自己的弱势项,例如对函数拿手却对几何一窍不通。
不少同学在数学复习时遇到自己不会的题型会选择直接跳过,去练习那些自己擅长的题型,这样一位的逃避只会让自己的缺陷一直存在,对于存在弱势项的同学应该及时查漏补缺,不要存在侥幸心理,如果考试时刚好考到自己不会的那部分知识吃亏的只能是自己。
2010全国一卷高考数学难吗?
当然是文科!为什么?这个难度是针对考生本身感受说的,因为文科生大部分时间不是在数学题这种理性思维力,往往都是一天8个小时有7个小时在哇哇背东西,剩下一小时有半小时都在进入状态!跟理科生整日都在理性思维上度过是没法比的!
所以就算题本身理科多一道难题,但整体感受上,文科绝对比理科要难!
其实理科试卷也不难,只是重点位置不太一样和涉及知识点数量要比文科多!
难与不难是相对的,就考生感受而论,当然是文科生感觉更难些!
但如果你把文科的试卷给理科生看,理科生当然觉得很简单啊!人家天天嚼这个啊!
你如果觉得自己稍一努力数学就能进步一些,那还是选理科吧!当然也不一定!
太难了,最后三题没法做,选择题填空题难度不变
难题考哭不少学生
考生印象
“考死人了,这么难的题目,怎么做啊。”在南宁一中考点,一名考生一出考场就哭了。这名考生向领队老师哭诉说:“太难了,很多题目根本没有办法算出来,有的题目看不懂,原来觉得南宁市‘二模’已经很难了,没有想到这个还要难。”
“个个愁眉苦脸,唉声叹气,像霜打的茄子。”一名高三班主任心疼地告诉记者,她自己没看到试题,但数学科目一散考,看到考生出场的表情,就知道考生的考试状况了。害怕考生失去士气,她只能一个劲地安慰学生“我难大家难,考完一科忘一科”。
一名考生告诉记者,他们班上有个同学,两次在数学奥林匹克竞赛中都拿奖,但是这次高考做出来的题目,加起来都不到130分。当天晚上,学校害怕他们沮丧的心情影响后面两科考试,还在广播里不断安慰大家。
一名监考老师说,当天他在监考数学时,发现很多考生后边的大题几乎是一片空白。个别学生可能因为试题太难,到最后直接放弃睡觉了。有的考生刚出考场,就忍不住哭起来了。
试卷评析
点评者:南宁八中中学高级教师黄文昭
与去年数学试题相比,今年高考数学试题在题型和题量上基本保持不变。但是,今年的数学试题能力立意型试题较多,运算量较大,难度较去年确实有所增加,这主要体现在试题的思维量和运算量的增加。
在选择题上,今年试题比往年更难。在12道选择题中,前边7题属于基础题,比较容易得分,但从第8题开始,难度增大。如果考生答不出来,又不懂得放弃的话,容易在难题上绊住脚,进而影响后边答题的心态和时间。
在解答题中,第17题仍为三角函数问题,但与往年相比有一定的新意,着重考查了正弦定理及三角公式的恒等变形,在思路上与往年试题有所不同。第20题导数问题,属于起点低、广入口、高结尾的问题。学生感觉题目容易,但是深入较难,不易得高分。第21题解析几何题,由于运算量答,容易使学生产生畏难情绪。第22题数列问题,考查简单的递推关系求通项和不等式证明。第一问较易,大多数学生应该能够顺利完成。但是,第二问难度较大,灵活性较强。
理科数学试卷中的第20、21、22题三道大题,虽然都是多问,但第一问都不好做,尤其是第21题解析几何题,虽然前几年也考过类似题型,但计算量没今年大,部分计算能力不强的同学,也会因此失分。
就整个试卷来看,重点考察函数与导数、数列与不等式、概率统计、直线与圆锥曲线综合的相关内容,试题要求学生对知识点的灵活运用非常到位,这对于大多数学生来说是一个不小的挑战。