您现在的位置是: 首页 > 教育政策 教育政策

2004湖南高考数学_2004湖南高考数学图片版

tamoadmin 2024-06-05 人已围观

简介1.湖南省新高考从哪一年开始2.湖南用的什么高考卷3.湖南高考是全国卷几卷4.跪求高中数学题型归纳(湖南省)!湖南体育职业学院单招不难。本文将从单招考试的题目难度、出题组织、考试范围和分值等方面,分析高职单招考试的难度。 考试题目简单单招考试题比较简单,单招文化考试主要注重基础,同时面试得分相对容易。 出题组织不同单招考试是由省考试院统一组织,各试点单招学校独立命题、自主组织测试。 考试范围

1.湖南省新高考从哪一年开始

2.湖南用的什么高考卷

3.湖南高考是全国卷几卷

4.跪求高中数学题型归纳(湖南省)!

2004湖南高考数学_2004湖南高考数学图片版

湖南体育职业学院单招不难。本文将从单招考试的题目难度、出题组织、考试范围和分值等方面,分析高职单招考试的难度。

考试题目简单

单招考试题比较简单,单招文化考试主要注重基础,同时面试得分相对容易。

出题组织不同

单招考试是由省考试院统一组织,各试点单招学校独立命题、自主组织测试。

考试范围有限

单招考试普高学生只考4科,即语文、数学、外语和综合科,三校生(职高、中专、技校)考填报专业的专业考试,而普通高考考试科目虽然为4科,但需要考文综或理综。

考试分值较低

单招考试中的语文、数学、英语原则上为180-200分,素质测评即面试分值在100-120分,各测试院校的设定分值不一样,具体以各测试学院招生简章为准。

难度相对较小

总体来说,高职单招考试的难度要比全国统一的普通高考难度小很多。因为单招考试主要是针对是文化课成绩不是很理想的考生而进行的选拔考试,因此在文化课的考察上要求不会太难。

湖南省新高考从哪一年开始

根据以往的经验,湖南高考难度全国排名第14名,属于中等靠上的难度水平。

相较于其他的省份来说,湖南省的高考难度是较大的。预计2023年湖南高考报名人数达68万,比2022年增加了2.5万人,创历史新高,整体难度将进一步增加。

2023年湖南省高考使用的是“全国1卷”又叫作“新高考一卷”。新高考一卷的统考科目有三门,分别是:语文、数学、外语(英、俄、日、法、德中任选一门);2023年湖南高考选考科目又叫作“高中学业水平选考科目”,包含了:物理、历史、思想政治、地理、化学、生物学;湖南考生们需要在物理和历史中任选一门、并在思想政治、地理、化学、生物学这四门科目中任选两门。

2023年湖南高考难度趋势:

2023年湖南高考的难度将比往年可能会简单一些。因为从近十年高考试题难度来看,整体难度呈下降趋势。但是随着难度系数上升,高考录取分数线势必下降;与此相反,高考录取分数线必然会上升,因此湖南2023高考的难度应在2022以内保持稳定,难度系数与去年基本持平。

2023年湖南高考各批次分数线,一般来说不会和以前相差太多。小编对2023湖南高考分数线进行了预测,具体内容如下:

2023年湖南物理类本科批预计的录取分数线为415分;历史类本科批预计的录取分数线为450分;

2023年湖南物理类特殊类型招生控制线的录取分数线预计为470分;历史类特殊类型招生控制线的录取分数线预计为500分;

2023年湖南物理类专科批的录取分数线预计为200分;历史类专科批的录取分数线预计为200分。

湖南用的什么高考卷

湖南省新高考从2018年开始

湖南新高考就是从2018年9月高一新生入学时开始实行,2021年已经进行了首届新高考,采取3+1+2高考模式,其中语文、数学、外语3门课为统考科目,然后从物理、历史中选择1门为首选科目,在思想政治、地理、化学、生物学中选择2门为再选科目,总分为750分。

具体考试时间安排如下:

6月7日:语文9:00至11:30,数学15:00至17:00。

6月8日:历史/物理9:00至10:15,外语15:00至17:00。

6月9日:化学8:30至9:45,地理11:00至12:15,思想政治14:30至15:45,生物学17:00至18:15。

改革目标:

通过深化新时代高考综合改革,建立健全德智体美劳全面考查内容体系,建立符合教育规律和人才成长规律、顺应时代要求的普通高校考试招生制度,实行全面发展的考试、综合考核的评价、更加公平的选拔,实现学生成长、国家选才和社会公平的有机统一。

湖南省新高考的注意事项:

1、了解新高考政策

湖南省实施了新高考改革,包括学业水平考试和综合素质评价两个方面。考生要详细了解新高考政策,包括考试科目、比例、分值等,并在备考过程中充分理解和掌握。

2、确定志愿和专业选择

考生应根据自己的兴趣、优势和职业规划,认真选择志愿和专业。可以参考学校的招生简章和相关咨询,了解专业的培养方案、就业前景等信息,做出明智的选择。

3、合理备考计划

制定合理的备考计划,科学安排学习时间和任务。结合新高考的考试内容和要求,进行有针对性的复习和训练,注重基础知识的掌握和解题能力的提升。

4、注意考场纪律和规范

进入考场后,要严格遵守考场纪律,服从监考人员的指导。禁止携带与考试无关的物品,如手机、通讯工具等。同时,要保持安静,不与他人交流,确保公平公正的考试环境。

以上数据来自大学生必备网。

湖南高考是全国卷几卷

湖南用的什么高考卷介绍如下:

2023湖南高考是新高考全国一卷(语文、数学、外语),物理、化学、生物、政治、历史、地理等科目为本省自命题。2023新高考全国一卷使用省份:江苏、河北、福建、山东、湖北、湖南、广东、浙江。

2023年湖北高考是全国几卷

根据相关数据得知,2023湖南高考是新高考全国一卷(语文、数学、外语),物理、化学、生物、政治、历史、地理等科目为本省自命题。

2023新高考全国一卷使用省份:江苏、河北、福建、山东、湖北、湖南、广东、浙江。

湖南高考统考科目包括语文、数学、外语,其中外语可在英、俄、日、法、德中任选一门,分为听力和笔试;高中学业水平选考科目则包括物理、历史、思想政治、地理、化学、生物学,物理、历史2选1,思想政治、地理、化学、生物学4选2。

考生高考文化总成绩由全国统一高考的语文、数学、外语3科成绩和考生选择的3科高中学业水平

考试选择性考试科目成绩组成,满分为750分。

2023湖南高考政策

2023湖南高考采用的是新高考Ⅰ卷。湖南属于高考难度困难模式地区。

第4档地区(困难模式):

重庆,浙江,湖南,江西,河北,江苏,贵州,甘肃

湖南新高考总分750分满分。

湖南采取3+1+2新高考模式,不分文理科。

“3”:为全国统考科目语文、数学、外语,所有学生必考。每科满分均为150分,总分450分,各科均以原始成绩计入考生总成绩。

“1”:为首选科目,考生须在高中学业水平选择性考试的物理、历史科目中选择1科。满分为100分,以原始成绩计入考生总成绩。省级招生考试机构将按选考物理、选考历史两个类别分别公布招生计划、分别划线、分别进行投档录取。

“2”:为再选科目,考生可在化学、生物、思想政治、地理4个科目中选择2科。每科满分均为100分,以等级赋分成绩计入考生总成绩。

跪求高中数学题型归纳(湖南省)!

2023年湖南省高考使用的是“全国1卷”又叫作“新高考一卷”。

2023湖南高考用的是新高考一卷。统考科目包括语文、数学、外语,其中外语可在英、俄、日、法、德中任选一门,分为听力和笔试;高考考全国一卷的省份有:广东、湖南、江苏、福建、湖北、河北、山东、浙江。

2023年湖南省高考使用的是“全国1卷”又叫作“新高考一卷”。新高考一卷的统考科目有三门,分别是:语文、数学、外语(英、俄、日、法、德中任选一门);

2023年湖南高考选考科目又叫作“高中学业水平选考科目”,包含了:物理、历史、思想政治、地理、化学、生物学;湖南考生们需要在物理和历史中任选一门、并在思想政治、地理、化学、生物学这四门科目中任选两门。

2023湖南高考总分及各科分值

湖南考生高考文化总成绩由全国统一高考的语文、数学、外语3科成绩和考生选择的3科高中学业水平考试选择性考试科目成绩组成,满分为750分。

湖南高考的语文、数学、外语3科,每科满分为150分,共450分,各科均以原始分计入考生总成绩。

湖南高中学业水平考试选择性考试的6门科目,每科满分为100分,共300分。其中,首选科目(物理、历史)以原始分计入湖南考生总成绩,再选科目(思想政治、地理、化学、生物)以等级分计入考生总成绩。

几种数学题型解法归纳

第一种:数列(等差数列与等比数列)

——北京十二中特级教师 刘文武

清华附中特级教师 张小英

数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的问题。数列中最基本的是等差数列与等比数列。

所谓数列,就是按一定次序排列的一列数。如果数列{an}的第n项an与项数(下标)n之间的函数关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。

从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。

为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。

一、 等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列{an}的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列{an}中,等差中项:

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

二、 等比数列

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

等比数列{an}的通项公式是:

an=a1·qn-1

前n项和公式是:

在等比数列中,等比中项:

且任意两项am,an的关系为an=am·qn-m

如果等比数列的公比q满足0<∣q∣<1,这个数列就叫做无穷递缩等比数列,它的各

项的和(又叫所有项的和)的公式为:

从等比数列的定义、通项公式、前n项和公式可以推出:

a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,则有:

ap·aq=am·an,

记πn=a1·a2…an,则有

π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则{Can}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。

数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。

三、 范例

例1.设ap,aq,am,an是等比数列{an}中的第p、q、m、n项,若p+q=m+n,求证:apoaq=amoan

证明:设等比数列{an}的首项为a1,公比为q,则

ap=a1·qp-1,aq=a1·qq-1,am=a1·qm-1,an=a1·qn-1

所以:

ap·aq=a12qp+q-2,am·an=a12·qm+n-2,

故:ap·aq=am+an

说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:

a1+k·an-k=a1·an

对于等差数列,同样有:在等差数列{an}中,距离两端等这的两项之和等于首末两项之和。即:

a1+k+an-k=a1+an

例2.在等差数列{an}中,a4+a6+a8+a10+a12=120,则2a9-a10=

A.20 B.22 C.24 D28

解:由a4+a12=2a8,a6+a10 =2a8及已知或得

5a8=120,a8=24

而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。

故选C

例3.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )

A.a1+a101>0 B. a2+a100<0 C.a3+a99=0 D.a51=51

[2000年北京春季高考理工类第(13)题]

解:显然,a1+a2+a3+…+a101

故a1+a101=0,从而a2+a100=a3+a99=a1+a101=0,选C

例4.设Sn为等差数列{an}的前n项之各,S9=18,an-4=30(n>9),Sn=336,则n为( )

A.16 B.21 C.9 D8

解:由于S9=9×a5=18,故a5=2,所以a5+an-4=a1+an=2+30=32,而,故n=21选B

例5.设等差数列{an}满足3a8=5a13,且a1>0,Sn为其前n项之和,则Sn(n∈N*)中最大的是( )。 (1995年全国高中联赛第1题)

(A)S10 (B)S11 (C)S20 (D)S21

解:∵3a8=5a13

∴3(a1+7d)=5(a1+12d)

令an≥0→n≤20;当n>20时an<0

∴S19=S20最大,选(C)

注:也可用二次函数求最值

例6.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有( )

(A)2个 (B)3个 (C)4个 (D)5个

[1997年全国高中数学联赛第3题]

解:设等差数列首项为a,公差为d,则依题意有( )

即[2a+(n-1)d]on=2×972 (*)

因为n是不小于3的自然数,97为素数,故数n的值必为2×972的约数(因数),它只能是97,2×97,972,2×972四者之一。

若d>0,则d≥1由(*)式知2×972≥n(n-1)d≥n(n-1)故只可能有n=97,(*)式化为:a+48d=97,这时(*)有两组解:

若d=0,则(*)式化为:an=972,这时(*)也有两组解。

故符今题设条件的等差数列共4个,分别为:

49,50,51,…,145,(共97项)

1,3,5,…,193,(共97项)

97,97,97,…,97,(共97项)

1,1,1,…,1(共972=9409项)

故选(C)

例7.将正奇数集合{1,3,5,…}由小到大按第n组有(2n-1)个奇数进行分组:

{1}, {3,5,7},{9,11,13,15,17},…

(第一组) (第二组) (第三组)

则1991位于第 组中。

[1991年全国高中数学联赛第3题]

解:依题意,前n组中共有奇数

1+3+5+…+(2n-1)=n2个

而1991=2×996-1,它是第996个正奇数。

∵312=961<996<1024=322

∴1991应在第31+1=32组中。

故填32

例8.一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为 。

[1989年全国高中联赛试题第4题]

解:设该数为x,则其整数部分为[x],小数部分为x-[x],由已知得:x·(x-[x]=[x]2

其中[x]>0,0<x-[x]<1,解得:

由0<x-[x]<1知,

∴[x]=1,

故应填

例9.等比数列{an}的首项a1=1536,公比,用πn表示它的前n项之积,则πn(n∈N*)最大的是( )

(A)π9 (B)π11 (C)π12 (D)π13

[1996年全国高中数学联赛试题]

解:等比数列{an}的通项公式为,前n项和

因为

故π12最大。

选(C)

例10.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么= 。

[1988年全国高中联赛试题]

解:依题意,有y-x=4(a2-a1) ∴;

又y-x=3(b3-b2) ∴

例11.设x,y,Z是实数,3x,4y,5z成等比数列,且成等差数列,则的值是 。[1992年全国高中数学联赛试题]

解:因为3x,4y,5z成等比数列,所以有

3x·5z=(4y)2 即16y2=15xz ①

又∵成等差数列,所以有即②

将②代入①得:

∵x≠0,y≠0,z≠0

∴64xz=15(x2+2xz+z2)

∴15(x2+z2)=34xz

例12.已知集合M={x,xy,lg(xy)}及N={0,∣x∣,y}

并且M=N,那么的值等于 。

解:由M=N知M中应有一元素为0,任由lg(xy)有意义知xy≠0,从而x≠0,且y≠0,故只有lg(xy)=0, xy=1,M={x,1,0};若y=1,则x=1,M=N={0,1,1}与集合中元素互异性相连,故y≠1,从而∣x∣=1,x=±1;由x=1 y=1(含),由x=-1 y=-1,M=N={0,1,-1}

此时,

从而

注:数列x,x2,x3,…,x2001;以及

在x=y=-1的条件下都是周期为2的循环数列,S2n-1=-2,S2n=0,故2001并不可怕。

例13.已知数列{an}满足3an+1+an=4(n≥1)且a1=9,其前n项之和为Sn,则满足不等式( )

∣Sn-n-6∣<的最小整数n是( )

(A)5 (B)6 (C)7 (D)8

解:[1994年全国高中数学联赛试题]

由3an+1+an=4(n≥1)

3an+1-3=1-an

故数列{an-1}是以8为首项,以为公比的等比数列,所以

当n=7时满足要求,故选(C)

[注]:数列{an}既不是等差数列,也不是等比数列,而是由两个项数相等的等差数列:1,1,…,1和等比数列: 的对应项的和构成的数列,故其前n项和Sn可转化为相应的两个已知数列的和,这里,观察通项结构,利用化归思想把未知转化为已知。

例14.设数列{an}的前n项和Sn=2an-1(n=1,2,…),数列{bn}满足b1=3,bk+1=ak+bk(k=1,2,…)求数列{bn}的前n项和。

[1996年全国高中数学联赛第二试第一题]

解:由Sn=2an-1,令n=1,得S1=a1=2a1-1,∴a1=1 ①

又Sn=2an-1 ②

Sn-1=2an-1-1 ③

②-③得:Sn-sn-1=2an-2an-1

∴an=2an-2an-1

∴数列{an}是以a1=1为首项,以q=2为公比的等比数列,故an=2n-1 ④

由⑤

∴以上诸式相加,得

注:本题综合应用了a1-s1,a3=Sn-Sn-1(n≥2)以及等差数列、等比数列求和公式以及叠加等方法,从基本知识出发,解决了较为复杂的问题。选准突破口,发现化归途径,源于对基础知识的深刻理念及其联系的把握。

例15.n2个正数排成n行n列

a11,a12,a13,a14,…,a1n

a21,a22,a23,a24,…,a2n

a31,a32,a33,a34,…,a3n

a41,a42,a43,a44,…,a4n

an1,an2,an3,an4,…,ann。

其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等。已知

[1990年全国高中数学联赛第一试第四题]

解:设第一行数列公差为d,纵行各数列公比为q,则原n行n列数表为:

故有:

②÷③得,代入①、②得④

因为表中均为正数,故q>0,∴,从而,因此,对于任意1≤k≤n,有

记S=a11+a22+a33+…+ann ⑤

⑤-⑥得:

评注:本题中求和,实为等差数列an=n与等比数列的对应项乘积构成的新数列的前n项的和,将⑤式两边同乘以公比,再错项相减,化归为等比数列求各。这种方法本是求等比数列前n项和的基本方法,它在解决此类问题中非常有用,应予掌握。课本P137复习参考题三B组题第6题为:求和:S=1+2x+3x2+…+nxn-1;2003年北京高考理工类第(16)题:已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,(I)求数列{an}的通项公式;(II)令bn=an·xn(x∈R),求数列{bn}的前n项和公式。都贯穿了“错项相减”方法的应用。

第二种:指数函数与对数函数 ————北京十二中 刘文武 指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。 一、 指数概念与对数概念: 指数的概念是由乘方概念推广而来的。相同因数相乘a·a……a(n个)=an导出乘方,这里的n为正整数。从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念。 欧拉指出:“对数源出于指数”。一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作:logaN=b 其中a叫做对数的底数,N叫做真数。 ab=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。当给出b求N时,是指数运算,当给出N求b时,是对数运算。指数运算与对数运算互逆的运算。 二、指数运算与对数运算的性质 1.指数运算性质主要有3条: ax·ay=ax+y,(ax)y=axy,(ab)x=ax·bx(a>0,a≠1,b>0,b≠1) 2.对数运算法则(性质)也有3条: (1)loga(MN)=logaM+logaN (2)logaM/N=logaM-logaN (3)logaMn=nlogaM(n∈R) (a>0,a≠1,M>0,N>0) 3.指数运算与对数运算的关系: X=alogax;mlogan=nlogam 4.负数和零没有对数;1的对数是零,即 loga1=0;底的对数是1,即logaa=1 5.对数换底公式及其推论: 换底公式:logaN=logbN/logba 推论1:logamNn=(n/m)logaN 推论2: 三、指数函数与对数函数 函数y=ax(a>0,且a≠1)叫做指数函数。它的基本情况是: (1)定义域为全体实数(-∞,+∞) (2)值域为正实数(0,+∞),从而函数没有最大值与最小值,有下界,y>0 (3)对应关系为一一映射,从而存在反函数--对数函数。 (4)单调性是:当a>1时为增函数;当00,a≠1), f(x+y)=f(x)·f(y),f(x-y)=f(x)/f(y) 函数y=logax(a>0,且a≠1)叫做对数函数,它的基本情况是: (1)定义域为正实数(0,+∞) (2)值域为全体实数(-∞,+∞) (3)对应关系为一一映射,因而有反函数——指数函数。 (4)单调性是:当a>1时是增函数,当00,a≠1), f(x·y)=f(x)+f(y), f(x/y)=f(x)-f(y) 例1.若f(x)=(ax/(ax+√a)),求f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001) 分析:和式中共有1000项,显然逐项相加是不可取的。需找出f(x)的结构特征,发现规律,注意到1/1001+1000/1001=2/1001+999/1001=3/1001+998/1001=…=1, 而f(x)+f(1-x)=(ax/(ax+√a))+(a1-x/(a1-x+√a))=(ax/(ax+√a))+(a/(a+ax·√a))=(ax/(ax+√a))+((√a)/(ax+√a))=((ax+√a)/(ax+√a))=1规律找到了,这启示我们将和式配对结合后再相加: 原式=[f(1/1001)+f(1000/1001)]+[f(2/1001)+f(999/1001)]+…+[f(500/1001)+f(501/1001)]=(1+1+…+1)5000个=500 说明:观察比较,发现规律f(x)+f(1-x)=1是本例突破口。 (1)取a=4就是1986年的高中数学联赛填空题:设f(x)=(4x/(4x+2)),那么和式f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值= 。 (2)上题中取a=9,则f(x)=(9x/(9x+3)),和式值不变也可改变和式为求f(1/n)+f(2/n)+f(3/n)+…+f((n-1)/n). (3)设f(x)=(1/(2x+√2)),利用课本中推导等差数列前n项和的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为 。这就是2003年春季上海高考数学第12题。 例2.5log25等于:( ) (A)1/2 (B)(1/5)10log25 (C)10log45 (D)10log52 解:∵5log25=(10/2)log25=(10log25)/(2log25)=(1/5)×10log25 ∴选(B) 说明:这里用到了对数恒等式:alogaN=N(a>0,a≠1,N>0) 这是北京市1997年高中一年级数学竞赛试题。 例3.计算 解法1:先运用复合二次根式化简的配方法对真数作变形。 解法2:利用算术根基本性质对真数作变形,有 说明:乘法公式的恰当运用化难为易,化繁为简。 例4.试比较(122002+1)/(122003+1)与(122003+1)/(122004+1)的大小。 解:对于两个正数的大小,作商与1比较是常用的方法,记122003=a>0,则有 ((122002+1)/(122003+1))÷((122003+1)/(122004+1))=((a/12)+1)/(a+1)·((12a+1)/(a+1))=((a+12)(12a+1))/(12(a+1)2)=((12a2+145a+12)/(12a2+24a+12))>1 故得:((122002+1)/(122003+1))>((122003+1)/(122004+1)) 例5.已知(a,b为实数)且f(lglog310)=5,则f(lglg3)的值是( ) (A)-5 (B)-3 (C)3 (D)随a,b的取值而定 解:设lglog310=t,则lglg3=lg(1/log310)=-lglog310=-t 而f(t)+f(-t)= ∴f(-t)=8-f(t)=8-5=3 说明:由对数换底公式可推出logab·logba=(lgb/lga)·(lga/lgb)=1,即logab=(1/logba),因而lglog310与lglg3是一对相反数。设中的部分,则g(x)为奇函数,g(t)+g(-t)=0。这种整体处理的思想巧用了奇函数性质使问题得解,关键在于细致观察函数式结构特征及对数的恒等变形。

第三种:二次函数 二次函数是最简单的非线性函数之一,而且有着丰富内涵。在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。因此,必须透彻熟练地掌握二次函数的基本性质。 学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x∈R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。 一、“四个二次型”概述 在河南教育出版社出版的《漫谈ax2+bx+c》一书中(作者翟连林等),有如下一个“框图”: (一元)二次函数 y=ax2+bx+c (a≠0) → a=0 → (一元)一次函数 y=bx+c(b≠0) ↑ ↑ ↑ ↑ (一元)二次三项式 ax2+bx+c(a≠0) → a=0 → 一次二项式 bx+c(b≠0) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 一元二次方程 ax2+bx+c=0(a≠0) → a=0 → 一元一次方程 bx+c=0(b≠0) ↓ ↓ ↓ 一元二次不等式 ax2+bx+c>0或 ax2+bx+c<0(a≠0) → a=0 → 一元一次不等式 bx+c>0或 bx+c<0(b≠0) 观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。故将它们合称为“四个二次型”。其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。而二次函数y=ax2+bx+c(a≠0),犹如“四个二次型”的首脑或统帅:它的定义域即自变量X的取值范围是全体实数,即n∈R;它的解析式f(x)即是二次三项式ax2+bx+c(a≠0);若y=0,即ax2+bx+c=0(a≠0),就是初中重点研究的一元二次方程;若y>0或y<0,即ax2+bx+c>0或ax2+bx+c<0(a≠0),就是高中一年级重点研究的一元二次不等式,它总揽全局,是“四个二次型”的灵魂。讨论零值的一元二次函数即一元二次方程是研究“四个二次型”的关键所在,它直接影响着两大主干:一元二次方程和一元二次不等式的求解。一元二次方程的根可看作二次函数的零点;一元二次不等式的解集可看作二次函数的正、负值区间。心脏、头脑、关键、主干、一句话,“四个二次型”联系密切,把握它们的相互联系、相互转化、相互利用,便于寻求规律,灵活运用,使学习事半功倍。 二、二次函数的解析式 上面提到,“四个二次型”的心脏是二次三项式:二次函数是通过其解析式来定义的(要特别注意二次项系数a≠0);二次函数的性质是通过其解析式来研究的。因此,掌握二次函数首先要会求解析式,进而才能用解析式去解决更多的问题。 Y=ax2+bx+c(a≠0)中有三个字母系数a、b、c,确定二次函数的解析式就是确定字母a、b、c的取值。三个未知数的确定需要3个独立的条件,其方法是待定系数法,依靠的是方程思想及解方程组。 二次函数有四种待定形式: 1.标准式(定义式):f(x)=ax2+bx+c.(a≠0) 2.顶点式: f(x)=a(x-h)2+k .(a≠0) 3.两根式(零点式):f(x)=a(x-x1)(x-x2). (a≠0) 4.三点式:(见罗增儒《高中数学竞赛辅导》) 过三点A(x1,f (x1))、B(x2,f (x2))、C(x3,f (x3))的二次函数可设为 f (x)=a1(x-x2)(x-x3)+a2(x-x1)(x-x3)+a3(x-x1)(x-x2)把ABC坐标依次代入,即令x=x1,x2,x3,得 f (x1)=a1(x1-x2)(x1-x3), f (x2)=a2(x2-x1)(x2-x3), f (x3)=a3(x3-x1)(x3-x2) 解之,得:a1=f (x1)/ (x1-x2)(x1-x3),a2=f (x2)/ (x2-x1)(x2-x3),a3=f (x3)/ (x3-x1)(x3-x2) 从而得二次函数的三点式为:f(x)=[f(x1)/(x1-x2)](x1-x3)(x-x2)(x-x3)+[f(x2)/ (x2-x1)(x2-x3)](x-x1)(x-x3)+[f(x3)/(x3-x1)(x3-x2)](x-x1)(x-x2)根据题目所给的不同条件,灵活地选用上述四种形式求解二次函数解析式,将会得心应手。

文章标签: # 高考 # an # 二次