您现在的位置是: 首页 > 教育政策 教育政策

17年高考数学题一卷_17年高考数学试题

tamoadmin 2024-06-14 人已围观

简介1.高考数学最难的几年2.跪求高中数学题型归纳(湖南省)!高考数学考试时间为120分钟。高考数学科目是高考中的三门主科之一,也是很多考生最为关注的科目之一。高考数学考试的时间限制是120分钟,包括选择题、填空题和解答题。这么长的考试时间,对于许多人来说,可以充分发挥自己的能力,在考试中更好地发挥自己的水平。普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必

1.高考数学最难的几年

2.跪求高中数学题型归纳(湖南省)!

17年高考数学题一卷_17年高考数学试题

高考数学考试时间为120分钟。

高考数学科目是高考中的三门主科之一,也是很多考生最为关注的科目之一。高考数学考试的时间限制是120分钟,包括选择题、填空题和解答题。这么长的考试时间,对于许多人来说,可以充分发挥自己的能力,在考试中更好地发挥自己的水平。

普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。

1、高考数学考试内容

高考数学科目包含两个部分:基础知识和应用题。其中,基础知识包括数与式、函数、立体几何等基本概念和公式,应用题则通过实际问题对这些基本知识进行综合运用。高考数学考试主要考察考生对数学基础知识的掌握和应用能力。

2、高考数学成绩的重要性

高考数学成绩在高考总成绩中占比较大,尤其对于报考理工类专业的考生来说,数学成绩更是至关重要。因此,考生在备考和考试中都需要特别重视数学,全面提升自己的数学素养和能力水平。

为了更好地备考高考数学,考生可以采取以下几个措施:

充分了解考试信息:熟悉考试时间、题型和考察范围,合理安排备考计划。系统复习基础知识:集中复习高中数学的基础知识和公式,夯实基础。

多做练习题:通过大量的练习和真题演练,熟悉考试题型和解题方法。补充应用能力:参加数学竞赛和相关活动,提高自己的数学思维和应用能力。定期检测成果:进行模拟考试或自测,及时发现并纠正不足。

总之,在备考高考数学过程中,需要注重基础知识的掌握和理解,多做题提高应用能力,合理规划备考计划和时间,并保持积极乐观的心态。

高考数学最难的几年

广西成考网分享:广西成人高考专升本高等数学一考试真题及参考答案

一、选择题:1~10小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.

1.

A.2/3 B.1 C.3/2 D.3

答案:C

2.设函数y=2x+sinx,则y/=

A.1-cosx B.1+cosx C.2-cosx D.2+cosx

答案:D

3.设函数y=ex-2,则dy=

A.ex-3dx B.ex-2dx C.ex-1dx D.exdx

答案:B

4.设函数y=(2+x)3,则y/=

A.(2+x)2 B.3(2+x)2 C.(2+x)4 D.3(2+x)4

答案:B

5.设函数y=3x+1,则y/=

A.0 B.1 C.2 D.3

答案:A

6.

A.ex B.ex-1 C.ex-1 D.ex+1

答案:A

7.

A.2x2+C B.x2+C C.1/2x2+C D.x+C

答案:C

8.

A.1/2 B.1 C.2 D.3

答案:C

9.设函数z=3x2y,则αz/αy=

A.6y B.6xy C.3x D.3X2

答案:D

10.

A.0 B.1 C.2 D.+∞

答案:B

二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.

11.

答案:e2

12.设函数y=x3,则y/=

答案:3x2

13.设函数y=(x-3)4,则dy=

答案:4(x-3)3dx

14.设函数y=sin(x-2),则y"=

答案:-sin(x-2)

15.

答案:1/2ln|x|+C

16.

答案:0

17.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为

答案:3x+2y-2z=0

18.设函数x=3x+y2,则dz=

答案:3dx+2ydy

19.微分方程y/=3x2的通解为y=

答案:x3+C

20.

答案:2

三、解答题:21-28题,共70分。解答应写出推理、演算步骤。

21.(本题满分8分)

22.(本题满分8分)

23.(本题满分8分)

求曲线y=x3-3x+5的拐点。

解:y/=3x2-3,y"=6x

令y"=0,解得x=0

当x<0时,y"0时,y">0

当x=0是,y=5

因此,点(0,5)为所给曲线的拐点

24.(本题满分8分)

25.(本题满分8分)

26.(本题满分10分)

设D为曲线y=x2与直线y=x所围成的有界平面图形,求D饶x轴旋转一周所得旋转体的体积V。

以上就是关于广西成人高考专升本高等数学一考试真题及参考答案的相关内容,考生如果想获取更多关于广西成人高考信息,如成考答疑、报考指南、成绩查询、历年真题、学习方法、广西成考专升本试题题库等,敬请关注广西成考网。

专升本有疑问、不知道如何总结专升本考点内容、不清楚专升本报名当地政策,点击底部咨询官网,免费领取复习资料: style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">跪求高中数学题型归纳(湖南省)!

?年数学高考很难考。

年,2003年高考数学题是史上最难的高考题。年出题人祭出“活题”,考生措手不及。2003年的高考也是因为毫无征兆地进入了hard模式。

年,数学命题组提出了高考“出活题,考基础,考能力”的命题指导思想,创造了大批新题,即所谓活题。广大考生第一次见到这样的新题或活题,感到非常难。

据说,北京市当年考生的平均分只有17分,安徽省当年考生的平均分是28分,全国平均分只有26分。创下了新中国成立以来,数学高考难度之“最”。

高考历史解释:

高考是高等学校选拔新生的制度,中国有1300多年科举考试的历史,这一制度曾显示出选拔人才的优越性,深深地影响了东亚各国。1905年,清廷出于发展新教育、培养实用人才的需要,废除了科举制度,转而引进西方的学校考试制度。

中国现代高考制度的建立,就有这样两个重要来源:一是科举考试制度所形成的传统考试思维和价值,二是西方现试制度的模式和手段。

高考是普通高等学校招生全国统一考试的简称,于1952年实行,于1966年废除,于1977年恢复。是对中国学生高中三年学业水平的一次总结,是一种相对公正、公平、公开的人才选拔形式。

几种数学题型解法归纳

第一种:数列(等差数列与等比数列)

——北京十二中特级教师 刘文武

清华附中特级教师 张小英

数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的问题。数列中最基本的是等差数列与等比数列。

所谓数列,就是按一定次序排列的一列数。如果数列{an}的第n项an与项数(下标)n之间的函数关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。

从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。

为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。

一、 等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列{an}的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列{an}中,等差中项:

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

二、 等比数列

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

等比数列{an}的通项公式是:

an=a1·qn-1

前n项和公式是:

在等比数列中,等比中项:

且任意两项am,an的关系为an=am·qn-m

如果等比数列的公比q满足0<∣q∣<1,这个数列就叫做无穷递缩等比数列,它的各

项的和(又叫所有项的和)的公式为:

从等比数列的定义、通项公式、前n项和公式可以推出:

a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,则有:

ap·aq=am·an,

记πn=a1·a2…an,则有

π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则{Can}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。

数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。

三、 范例

例1.设ap,aq,am,an是等比数列{an}中的第p、q、m、n项,若p+q=m+n,求证:apoaq=amoan

证明:设等比数列{an}的首项为a1,公比为q,则

ap=a1·qp-1,aq=a1·qq-1,am=a1·qm-1,an=a1·qn-1

所以:

ap·aq=a12qp+q-2,am·an=a12·qm+n-2,

故:ap·aq=am+an

说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:

a1+k·an-k=a1·an

对于等差数列,同样有:在等差数列{an}中,距离两端等这的两项之和等于首末两项之和。即:

a1+k+an-k=a1+an

例2.在等差数列{an}中,a4+a6+a8+a10+a12=120,则2a9-a10=

A.20 B.22 C.24 D28

解:由a4+a12=2a8,a6+a10 =2a8及已知或得

5a8=120,a8=24

而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。

故选C

例3.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )

A.a1+a101>0 B. a2+a100<0 C.a3+a99=0 D.a51=51

[2000年北京春季高考理工类第(13)题]

解:显然,a1+a2+a3+…+a101

故a1+a101=0,从而a2+a100=a3+a99=a1+a101=0,选C

例4.设Sn为等差数列{an}的前n项之各,S9=18,an-4=30(n>9),Sn=336,则n为( )

A.16 B.21 C.9 D8

解:由于S9=9×a5=18,故a5=2,所以a5+an-4=a1+an=2+30=32,而,故n=21选B

例5.设等差数列{an}满足3a8=5a13,且a1>0,Sn为其前n项之和,则Sn(n∈N*)中最大的是( )。 (1995年全国高中联赛第1题)

(A)S10 (B)S11 (C)S20 (D)S21

解:∵3a8=5a13

∴3(a1+7d)=5(a1+12d)

令an≥0→n≤20;当n>20时an<0

∴S19=S20最大,选(C)

注:也可用二次函数求最值

例6.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有( )

(A)2个 (B)3个 (C)4个 (D)5个

[1997年全国高中数学联赛第3题]

解:设等差数列首项为a,公差为d,则依题意有( )

即[2a+(n-1)d]on=2×972 (*)

因为n是不小于3的自然数,97为素数,故数n的值必为2×972的约数(因数),它只能是97,2×97,972,2×972四者之一。

若d>0,则d≥1由(*)式知2×972≥n(n-1)d≥n(n-1)故只可能有n=97,(*)式化为:a+48d=97,这时(*)有两组解:

若d=0,则(*)式化为:an=972,这时(*)也有两组解。

故符今题设条件的等差数列共4个,分别为:

49,50,51,…,145,(共97项)

1,3,5,…,193,(共97项)

97,97,97,…,97,(共97项)

1,1,1,…,1(共972=9409项)

故选(C)

例7.将正奇数集合{1,3,5,…}由小到大按第n组有(2n-1)个奇数进行分组:

{1}, {3,5,7},{9,11,13,15,17},…

(第一组) (第二组) (第三组)

则1991位于第 组中。

[1991年全国高中数学联赛第3题]

解:依题意,前n组中共有奇数

1+3+5+…+(2n-1)=n2个

而1991=2×996-1,它是第996个正奇数。

∵312=961<996<1024=322

∴1991应在第31+1=32组中。

故填32

例8.一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为 。

[1989年全国高中联赛试题第4题]

解:设该数为x,则其整数部分为[x],小数部分为x-[x],由已知得:x·(x-[x]=[x]2

其中[x]>0,0<x-[x]<1,解得:

由0<x-[x]<1知,

∴[x]=1,

故应填

例9.等比数列{an}的首项a1=1536,公比,用πn表示它的前n项之积,则πn(n∈N*)最大的是( )

(A)π9 (B)π11 (C)π12 (D)π13

[1996年全国高中数学联赛试题]

解:等比数列{an}的通项公式为,前n项和

因为

故π12最大。

选(C)

例10.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么= 。

[1988年全国高中联赛试题]

解:依题意,有y-x=4(a2-a1) ∴;

又y-x=3(b3-b2) ∴

例11.设x,y,Z是实数,3x,4y,5z成等比数列,且成等差数列,则的值是 。[1992年全国高中数学联赛试题]

解:因为3x,4y,5z成等比数列,所以有

3x·5z=(4y)2 即16y2=15xz ①

又∵成等差数列,所以有即②

将②代入①得:

∵x≠0,y≠0,z≠0

∴64xz=15(x2+2xz+z2)

∴15(x2+z2)=34xz

例12.已知集合M={x,xy,lg(xy)}及N={0,∣x∣,y}

并且M=N,那么的值等于 。

解:由M=N知M中应有一元素为0,任由lg(xy)有意义知xy≠0,从而x≠0,且y≠0,故只有lg(xy)=0, xy=1,M={x,1,0};若y=1,则x=1,M=N={0,1,1}与集合中元素互异性相连,故y≠1,从而∣x∣=1,x=±1;由x=1 y=1(含),由x=-1 y=-1,M=N={0,1,-1}

此时,

从而

注:数列x,x2,x3,…,x2001;以及

在x=y=-1的条件下都是周期为2的循环数列,S2n-1=-2,S2n=0,故2001并不可怕。

例13.已知数列{an}满足3an+1+an=4(n≥1)且a1=9,其前n项之和为Sn,则满足不等式( )

∣Sn-n-6∣<的最小整数n是( )

(A)5 (B)6 (C)7 (D)8

解:[1994年全国高中数学联赛试题]

由3an+1+an=4(n≥1)

3an+1-3=1-an

故数列{an-1}是以8为首项,以为公比的等比数列,所以

当n=7时满足要求,故选(C)

[注]:数列{an}既不是等差数列,也不是等比数列,而是由两个项数相等的等差数列:1,1,…,1和等比数列: 的对应项的和构成的数列,故其前n项和Sn可转化为相应的两个已知数列的和,这里,观察通项结构,利用化归思想把未知转化为已知。

例14.设数列{an}的前n项和Sn=2an-1(n=1,2,…),数列{bn}满足b1=3,bk+1=ak+bk(k=1,2,…)求数列{bn}的前n项和。

[1996年全国高中数学联赛第二试第一题]

解:由Sn=2an-1,令n=1,得S1=a1=2a1-1,∴a1=1 ①

又Sn=2an-1 ②

Sn-1=2an-1-1 ③

②-③得:Sn-sn-1=2an-2an-1

∴an=2an-2an-1

∴数列{an}是以a1=1为首项,以q=2为公比的等比数列,故an=2n-1 ④

由⑤

∴以上诸式相加,得

注:本题综合应用了a1-s1,a3=Sn-Sn-1(n≥2)以及等差数列、等比数列求和公式以及叠加等方法,从基本知识出发,解决了较为复杂的问题。选准突破口,发现化归途径,源于对基础知识的深刻理念及其联系的把握。

例15.n2个正数排成n行n列

a11,a12,a13,a14,…,a1n

a21,a22,a23,a24,…,a2n

a31,a32,a33,a34,…,a3n

a41,a42,a43,a44,…,a4n

an1,an2,an3,an4,…,ann。

其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等。已知

[1990年全国高中数学联赛第一试第四题]

解:设第一行数列公差为d,纵行各数列公比为q,则原n行n列数表为:

故有:

②÷③得,代入①、②得④

因为表中均为正数,故q>0,∴,从而,因此,对于任意1≤k≤n,有

记S=a11+a22+a33+…+ann ⑤

⑤-⑥得:

评注:本题中求和,实为等差数列an=n与等比数列的对应项乘积构成的新数列的前n项的和,将⑤式两边同乘以公比,再错项相减,化归为等比数列求各。这种方法本是求等比数列前n项和的基本方法,它在解决此类问题中非常有用,应予掌握。课本P137复习参考题三B组题第6题为:求和:S=1+2x+3x2+…+nxn-1;2003年北京高考理工类第(16)题:已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,(I)求数列{an}的通项公式;(II)令bn=an·xn(x∈R),求数列{bn}的前n项和公式。都贯穿了“错项相减”方法的应用。

第二种:指数函数与对数函数 ————北京十二中 刘文武 指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。 一、 指数概念与对数概念: 指数的概念是由乘方概念推广而来的。相同因数相乘a·a……a(n个)=an导出乘方,这里的n为正整数。从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念。 欧拉指出:“对数源出于指数”。一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作:logaN=b 其中a叫做对数的底数,N叫做真数。 ab=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。当给出b求N时,是指数运算,当给出N求b时,是对数运算。指数运算与对数运算互逆的运算。 二、指数运算与对数运算的性质 1.指数运算性质主要有3条: ax·ay=ax+y,(ax)y=axy,(ab)x=ax·bx(a>0,a≠1,b>0,b≠1) 2.对数运算法则(性质)也有3条: (1)loga(MN)=logaM+logaN (2)logaM/N=logaM-logaN (3)logaMn=nlogaM(n∈R) (a>0,a≠1,M>0,N>0) 3.指数运算与对数运算的关系: X=alogax;mlogan=nlogam 4.负数和零没有对数;1的对数是零,即 loga1=0;底的对数是1,即logaa=1 5.对数换底公式及其推论: 换底公式:logaN=logbN/logba 推论1:logamNn=(n/m)logaN 推论2: 三、指数函数与对数函数 函数y=ax(a>0,且a≠1)叫做指数函数。它的基本情况是: (1)定义域为全体实数(-∞,+∞) (2)值域为正实数(0,+∞),从而函数没有最大值与最小值,有下界,y>0 (3)对应关系为一一映射,从而存在反函数--对数函数。 (4)单调性是:当a>1时为增函数;当00,a≠1), f(x+y)=f(x)·f(y),f(x-y)=f(x)/f(y) 函数y=logax(a>0,且a≠1)叫做对数函数,它的基本情况是: (1)定义域为正实数(0,+∞) (2)值域为全体实数(-∞,+∞) (3)对应关系为一一映射,因而有反函数——指数函数。 (4)单调性是:当a>1时是增函数,当00,a≠1), f(x·y)=f(x)+f(y), f(x/y)=f(x)-f(y) 例1.若f(x)=(ax/(ax+√a)),求f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001) 分析:和式中共有1000项,显然逐项相加是不可取的。需找出f(x)的结构特征,发现规律,注意到1/1001+1000/1001=2/1001+999/1001=3/1001+998/1001=…=1, 而f(x)+f(1-x)=(ax/(ax+√a))+(a1-x/(a1-x+√a))=(ax/(ax+√a))+(a/(a+ax·√a))=(ax/(ax+√a))+((√a)/(ax+√a))=((ax+√a)/(ax+√a))=1规律找到了,这启示我们将和式配对结合后再相加: 原式=[f(1/1001)+f(1000/1001)]+[f(2/1001)+f(999/1001)]+…+[f(500/1001)+f(501/1001)]=(1+1+…+1)5000个=500 说明:观察比较,发现规律f(x)+f(1-x)=1是本例突破口。 (1)取a=4就是1986年的高中数学联赛填空题:设f(x)=(4x/(4x+2)),那么和式f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值= 。 (2)上题中取a=9,则f(x)=(9x/(9x+3)),和式值不变也可改变和式为求f(1/n)+f(2/n)+f(3/n)+…+f((n-1)/n). (3)设f(x)=(1/(2x+√2)),利用课本中推导等差数列前n项和的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为 。这就是2003年春季上海高考数学第12题。 例2.5log25等于:( ) (A)1/2 (B)(1/5)10log25 (C)10log45 (D)10log52 解:∵5log25=(10/2)log25=(10log25)/(2log25)=(1/5)×10log25 ∴选(B) 说明:这里用到了对数恒等式:alogaN=N(a>0,a≠1,N>0) 这是北京市1997年高中一年级数学竞赛试题。 例3.计算 解法1:先运用复合二次根式化简的配方法对真数作变形。 解法2:利用算术根基本性质对真数作变形,有 说明:乘法公式的恰当运用化难为易,化繁为简。 例4.试比较(122002+1)/(122003+1)与(122003+1)/(122004+1)的大小。 解:对于两个正数的大小,作商与1比较是常用的方法,记122003=a>0,则有 ((122002+1)/(122003+1))÷((122003+1)/(122004+1))=((a/12)+1)/(a+1)·((12a+1)/(a+1))=((a+12)(12a+1))/(12(a+1)2)=((12a2+145a+12)/(12a2+24a+12))>1 故得:((122002+1)/(122003+1))>((122003+1)/(122004+1)) 例5.已知(a,b为实数)且f(lglog310)=5,则f(lglg3)的值是( ) (A)-5 (B)-3 (C)3 (D)随a,b的取值而定 解:设lglog310=t,则lglg3=lg(1/log310)=-lglog310=-t 而f(t)+f(-t)= ∴f(-t)=8-f(t)=8-5=3 说明:由对数换底公式可推出logab·logba=(lgb/lga)·(lga/lgb)=1,即logab=(1/logba),因而lglog310与lglg3是一对相反数。设中的部分,则g(x)为奇函数,g(t)+g(-t)=0。这种整体处理的思想巧用了奇函数性质使问题得解,关键在于细致观察函数式结构特征及对数的恒等变形。

第三种:二次函数 二次函数是最简单的非线性函数之一,而且有着丰富内涵。在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。因此,必须透彻熟练地掌握二次函数的基本性质。 学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x∈R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。 一、“四个二次型”概述 在河南教育出版社出版的《漫谈ax2+bx+c》一书中(作者翟连林等),有如下一个“框图”: (一元)二次函数 y=ax2+bx+c (a≠0) → a=0 → (一元)一次函数 y=bx+c(b≠0) ↑ ↑ ↑ ↑ (一元)二次三项式 ax2+bx+c(a≠0) → a=0 → 一次二项式 bx+c(b≠0) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 一元二次方程 ax2+bx+c=0(a≠0) → a=0 → 一元一次方程 bx+c=0(b≠0) ↓ ↓ ↓ 一元二次不等式 ax2+bx+c>0或 ax2+bx+c<0(a≠0) → a=0 → 一元一次不等式 bx+c>0或 bx+c<0(b≠0) 观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。故将它们合称为“四个二次型”。其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。而二次函数y=ax2+bx+c(a≠0),犹如“四个二次型”的首脑或统帅:它的定义域即自变量X的取值范围是全体实数,即n∈R;它的解析式f(x)即是二次三项式ax2+bx+c(a≠0);若y=0,即ax2+bx+c=0(a≠0),就是初中重点研究的一元二次方程;若y>0或y<0,即ax2+bx+c>0或ax2+bx+c<0(a≠0),就是高中一年级重点研究的一元二次不等式,它总揽全局,是“四个二次型”的灵魂。讨论零值的一元二次函数即一元二次方程是研究“四个二次型”的关键所在,它直接影响着两大主干:一元二次方程和一元二次不等式的求解。一元二次方程的根可看作二次函数的零点;一元二次不等式的解集可看作二次函数的正、负值区间。心脏、头脑、关键、主干、一句话,“四个二次型”联系密切,把握它们的相互联系、相互转化、相互利用,便于寻求规律,灵活运用,使学习事半功倍。 二、二次函数的解析式 上面提到,“四个二次型”的心脏是二次三项式:二次函数是通过其解析式来定义的(要特别注意二次项系数a≠0);二次函数的性质是通过其解析式来研究的。因此,掌握二次函数首先要会求解析式,进而才能用解析式去解决更多的问题。 Y=ax2+bx+c(a≠0)中有三个字母系数a、b、c,确定二次函数的解析式就是确定字母a、b、c的取值。三个未知数的确定需要3个独立的条件,其方法是待定系数法,依靠的是方程思想及解方程组。 二次函数有四种待定形式: 1.标准式(定义式):f(x)=ax2+bx+c.(a≠0) 2.顶点式: f(x)=a(x-h)2+k .(a≠0) 3.两根式(零点式):f(x)=a(x-x1)(x-x2). (a≠0) 4.三点式:(见罗增儒《高中数学竞赛辅导》) 过三点A(x1,f (x1))、B(x2,f (x2))、C(x3,f (x3))的二次函数可设为 f (x)=a1(x-x2)(x-x3)+a2(x-x1)(x-x3)+a3(x-x1)(x-x2)把ABC坐标依次代入,即令x=x1,x2,x3,得 f (x1)=a1(x1-x2)(x1-x3), f (x2)=a2(x2-x1)(x2-x3), f (x3)=a3(x3-x1)(x3-x2) 解之,得:a1=f (x1)/ (x1-x2)(x1-x3),a2=f (x2)/ (x2-x1)(x2-x3),a3=f (x3)/ (x3-x1)(x3-x2) 从而得二次函数的三点式为:f(x)=[f(x1)/(x1-x2)](x1-x3)(x-x2)(x-x3)+[f(x2)/ (x2-x1)(x2-x3)](x-x1)(x-x3)+[f(x3)/(x3-x1)(x3-x2)](x-x1)(x-x2)根据题目所给的不同条件,灵活地选用上述四种形式求解二次函数解析式,将会得心应手。

文章标签: # an # 函数 # 二次