您现在的位置是: 首页 > 教育政策 教育政策

高考数学数列知识点归纳_高考数列知识

tamoadmin 2024-06-20 人已围观

简介1.如何学好高一数学中的数列知识?2.我想知道高考数学的数列经常和哪些知识点混在一起考?或者平时的数列题目经常和哪些知识点混在一起考?3.数列为什么不能取负数4.高中三年数学有多少个知识点5.高考数学必考知识点归纳总结6.2020高中数学等比数列教案设计大全高考数学六道大题的题型是:三角函数,概率,立体几何,函数,数列,解析几何。1、三角函数。是数学中属于初等函数中的超越函数的一类函数。它们的本质

1.如何学好高一数学中的数列知识?

2.我想知道高考数学的数列经常和哪些知识点混在一起考?或者平时的数列题目经常和哪些知识点混在一起考?

3.数列为什么不能取负数

4.高中三年数学有多少个知识点

5.高考数学必考知识点归纳总结

6.2020高中数学等比数列教案设计大全

高考数学数列知识点归纳_高考数列知识

高考数学六道大题的题型是:三角函数,概率,立体几何,函数,数列,解析几何。

1、三角函数。是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。

2、概率。它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。

3、立体几何。是3维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。

4、函数。数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

5、数列。是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。

6、解析几何。是一种借助于解析式进行图形研究的几何学分支。

学习数学重要性:

1、数学与我们生活息息相关。要说学数学的真正效果,它不是体现在应试教育上,而是将来自身的思维上。

2、数学的重要性不言而喻。数学是一切科学的基础,是培养逻辑思维重要渠道,可以说我们人类的每一次重大进步都有数学这门学科在做强有力的支撑。

3、生活中的数学知识运用无处不在。从日常生活中柴米油盐的费用的计算,到天文地理、质量控制、农业经济、航天事业都存在着运用数学的影子。

如何学好高一数学中的数列知识?

高考数学基础知识汇总

第一部分 集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;

(2) 注意:讨论的时候不要遗忘了 的情况。

(3)

第二部分 函数与导数

1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;

⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法

3.复合函数的有关问题

(1)复合函数定义域求法:

① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数 分解为基本函数:内函数 与外函数 ;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵ 是奇函数 ;

⑶ 是偶函数 ;

⑷奇函数 在原点有定义,则 ;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

6.函数的单调性

⑴单调性的定义:

① 在区间 上是增函数 当 时有 ;

② 在区间 上是减函数 当 时有 ;

⑵单调性的判定

1 定义法:

注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;

②导数法(见导数部分);

③复合函数法(见2 (2));

④图像法。

注:证明单调性主要用定义法和导数法。

7.函数的周期性

(1)周期性的定义:

对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期

① ;② ;③ ;

④ ;⑤ ;

⑶函数周期的判定

①定义法(试值) ②图像法 ③公式法(利用(2)中结论)

⑷与周期有关的结论

① 或 的周期为 ;

② 的图象关于点 中心对称 周期为2 ;

③ 的图象关于直线 轴对称 周期为2 ;

④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;

8.基本初等函数的图像与性质

⑴幂函数: ( ;⑵指数函数: ;

⑶对数函数: ;⑷正弦函数: ;

⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;

⑻其它常用函数:

1 正比例函数: ;②反比例函数: ;特别的

2 函数 ;

9.二次函数:

⑴解析式:

①一般式: ;②顶点式: , 为顶点;

③零点式: 。

⑵二次函数问题解决需考虑的因素:

①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。

10.函数图象:

⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法

⑵图象变换:

1 平移变换:ⅰ ,2 ———“正左负右”

ⅱ ———“正上负下”;

3 伸缩变换:

ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;

ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;

4 对称变换:ⅰ ;ⅱ ;

ⅲ ; ⅳ ;

5 翻转变换:

ⅰ ———右不动,右向左翻( 在 左侧图象去掉);

ⅱ ———上不动,下向上翻(| |在 下面无图象);

11.函数图象(曲线)对称性的证明

(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;

注:

①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;

③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;

特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;

⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

12.函数零点的求法:

⑴直接法(求 的根);⑵图象法;⑶二分法.

13.导数

⑴导数定义:f(x)在点x0处的导数记作 ;

⑵常见函数的导数公式: ① ;② ;③ ;

④ ;⑤ ;⑥ ;⑦ ;

⑧ 。

⑶导数的四则运算法则:

⑷(理科)复合函数的导数:

⑸导数的应用:

①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?

②利用导数判断函数单调性:

ⅰ 是增函数;ⅱ 为减函数;

ⅲ 为常数;

③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。

④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分

⑴定积分的定义:

⑵定积分的性质:① ( 常数);

② ;

③ (其中 。

⑶微积分基本定理(牛顿—莱布尼兹公式):

⑷定积分的应用:①求曲边梯形的面积: ;

3 求变速直线运动的路程: ;③求变力做功: 。

第三部分 三角函数、三角恒等变换与解三角形

1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度

⑵弧长公式: ;扇形面积公式: 。

2.三角函数定义:角 中边上任意一点 为 ,设 则:

3.三角函数符号规律:一全正,二正弦,三两切,四余弦;

4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;

5.⑴ 对称轴: ;对称中心: ;

⑵ 对称轴: ;对称中心: ;

6.同角三角函数的基本关系: ;

7.两角和与差的正弦、余弦、正切公式:①

② ③ 。

8.二倍角公式:① ;

② ;③ 。

9.正、余弦定理:

⑴正弦定理: ( 是 外接圆直径 )

注:① ;② ;③ 。

⑵余弦定理: 等三个;注: 等三个。

10。几个公式:

⑴三角形面积公式: ;

⑵内切圆半径r= ;外接圆直径2R=

11.已知 时三角形解的个数的判定:

第四部分 立体几何

1.三视图与直观图:注:原图形与直观图面积之比为 。

2.表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:

⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;

⑷球体:①表面积:S= ;②体积:V= 。

3.位置关系的证明(主要方法):

⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。

⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。

⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。

⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。

⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。

注:理科还可用向量法。

4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)

⑴异面直线所成角的求法:

1 平移法:平移直线,2 构造三角形;

3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。

注:理科还可用向量法,转化为两直线方向向量的夹角。

⑵直线与平面所成的角:

①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。

注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。

⑶二面角的求法:

①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;

②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;

③射影法:利用面积射影公式: ,其中 为平面角的大小;

注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;

理科还可用向量法,转化为两个班平面法向量的夹角。

5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)

⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;

⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;

⑶点到平面的距离:

①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;

5 等体积法;

理科还可用向量法: 。

⑷球面距离:(步骤)

(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。

6.结论:

⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;

⑵立平斜公式(最小角定理公式):

⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;

⑷长方体的性质

①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。

②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。

⑸正四面体的性质:设棱长为 ,则正四面体的:

1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;

第五部分 直线与圆

1.直线方程

⑴点斜式: ;⑵斜截式: ;⑶截距式: ;

⑷两点式: ;⑸一般式: ,(A,B不全为0)。

(直线的方向向量:( ,法向量(

2.求解线性规划问题的步骤是:

(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。

3.两条直线的位置关系:

4.直线系

5.几个公式

⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );

⑵点P(x0,y0)到直线Ax+By+C=0的距离: ;

⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;

6.圆的方程:

⑴标准方程:① ;② 。

⑵一般方程: (

注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;

7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。

8.圆系:

⑴ ;

注:当 时表示两圆交线。

⑵ 。

9.点、直线与圆的位置关系:(主要掌握几何法)

⑴点与圆的位置关系:( 表示点到圆心的距离)

① 点在圆上;② 点在圆内;③ 点在圆外。

⑵直线与圆的位置关系:( 表示圆心到直线的距离)

① 相切;② 相交;③ 相离。

⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )

① 相离;② 外切;③ 相交;

④ 内切;⑤ 内含。

10.与圆有关的结论:

⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;

过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;

⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。

第六部分 圆锥曲线

1.定义:⑴椭圆: ;

⑵双曲线: ;⑶抛物线:略

2.结论

⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);

②抛物线:

⑵弦长公式:

注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p。

⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);

⑷椭圆中的结论:

①内接矩形最大面积 :2ab;

②P,Q为椭圆上任意两点,且OP 0Q,则 ;

③椭圆焦点三角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内心, 交 于点 ,则 ;

④当点 与椭圆短轴顶点重合时 最大;

⑸双曲线中的结论:

①双曲线 (a>0,b>0)的渐近线: ;

②共渐进线 的双曲线标准方程为 为参数, ≠0);

③双曲线焦点三角形:<Ⅰ>. ,( );<Ⅱ>.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;

④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;

(6)抛物线中的结论:

①抛物线y2=2px(p>0)的焦点弦AB性质:<Ⅰ>. x1x2= ;y1y2=-p2;

<Ⅱ>. ;<Ⅲ>.以AB为直径的圆与准线相切;<Ⅳ>.以AF(或BF)为直径的圆与 轴相切;<Ⅴ>. 。

②抛物线y2=2px(p>0)内结直角三角形OAB的性质:

<Ⅰ>. ; <Ⅱ>. 恒过定点 ;

<Ⅲ>. 中点轨迹方程: ;<Ⅳ>. ,则 轨迹方程为: ;<Ⅴ>. 。

③抛物线y2=2px(p>0),对称轴上一定点 ,则:

<Ⅰ>.当 时,顶点到点A距离最小,最小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。

3.直线与圆锥曲线问题解法:

⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。

注意以下问题:

①联立的关于“ ”还是关于“ ”的一元二次方程?

②直线斜率不存在时考虑了吗?

③判别式验证了吗?

⑵设而不求(代点相减法):--------处理弦中点问题

步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。

4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。

第七部分 平面向量

⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;

② a⊥b(a、b≠0) a?b=0 x1x2+y1y2=0 .

⑵a?b=|a||b|cos<a,b>=x2+y1y2;

注:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;

6 a?b的几何意义:a?b等于|a|与|b|在a方向上的投影|b|cos<a,b>的乘积。

⑶cos<a,b>= ;

⑷三点共线的充要条件:P,A,B三点共线 ;

附:(理科)P,A,B,C四点共面 。

第八部分 数列

1.定义:

⑴等差数列 ;

⑵等比数列

2.等差、等比数列性质

等差数列 等比数列

通项公式

前n项和

性质 ①an=am+ (n-m)d, ①an=amqn-m;

②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq

③ 成AP ③ 成GP

④ 成AP, ④ 成GP,

等差数列特有性质:

1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ;

2 项数为2n-1时:S2n-1=(2n-1) ; ; ;

3 若 ;若 ;

若 。

3.数列通项的求法:

⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ;

⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;

⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。

注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。

4.前 项和的求法:

⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。

5.等差数列前n项和最值的求法:

⑴ ;⑵利用二次函数的图象与性质。

第九部分 不等式

1.均值不等式:

注意:①一正二定三相等;②变形, 。

2.绝对值不等式:

3.不等式的性质:

⑴ ;⑵ ;⑶ ;

;⑷ ; ;

;⑸ ;(6)

4.不等式等证明(主要)方法:

⑴比较法:作差或作比;⑵综合法;⑶分析法。

第十部分 复数

1.概念:

⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;

⑵z=a+bi是虚数 b≠0(a,b∈R);

⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;

⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);

2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:

(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)?(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;

3.几个重要的结论:

;⑶ ;⑷

⑸ 性质:T=4; ;

(6) 以3为周期,且 ; =0;

(7) 。

4.运算律:(1)

5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。

6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;

第十一部分 概率

1.事件的关系:

⑴事件B包含事件A:事件A发生,事件B一定发生,记作 ;

⑵事件A与事件B相等:若 ,则事件A与B相等,记作A=B;

⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作 (或 );

⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作 (或 ) ;

⑸事件A与事件B互斥:若 为不可能事件( ),则事件A与互斥;

(6)对立事件: 为不可能事件, 为必然事件,则A与B互为对立事件。

2.概率公式:

⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);

⑵古典概型: ;

⑶几何概型: ;

第十二部分 统计与统计案例

1.抽样方法

⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。

注:①每个个体被抽到的概率为 ;

②常用的简单随机抽样方法有:抽签法;随机数法。

⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的

规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。

注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;

④按预先制定的规则抽取样本。

⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。

注:每个部分所抽取的样本个体数=该部分个体数

2.总体特征数的估计:

⑴样本平均数 ;

⑵样本方差 ;

⑶样本标准差 = ;

3.相关系数(判定两个变量线性相关性):

注:⑴ >0时,变量 正相关; <0时,变量 负相关;

⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。

4.回归分析中回归效果的判定:

⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。

注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;

② 越接近于1,,则回归效果越好。

5.独立性检验(分类变量关系):

随机变量 越大,说明两个分类变量,关系越强,反之,越弱。

第十四部分 常用逻辑用语与推理证明

1. 四种命题:

⑴原命题:若p则q; ⑵逆命题:若q则p;

⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

注:原命题与逆否命题等价;逆命题与否命题等价。

2.充要条件的判断:

(1)定义法----正、反方向推理;

(2)利用集合间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;

3.逻辑连接词:

⑴且(and) :命题形式 p q; p q p q p q p

⑵或(or):命题形式 p q; 真 真 真 真 假

⑶非(not):命题形式 p . 真 假 假 真 假

假 真 假 真 真

假 假 假 假 真

4.全称量词与存在量词

⑴全称量词-------“所有的”、“任意一个”等,用 表示;

全称命题p: ;

全称命题p的否定 p: 。

⑵存在量词--------“存在一个”、“至少有一个”等,用 表示;

特称命题p: ;

特称命题p的否定 p: ;

第十五部分 推理与证明

1.推理:

⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:

⑴大前提---------已知的一般结论;

⑵小前提---------所研究的特殊情况;

⑶结 论---------根据一般原理,对特殊情况得出的判断。

二.证明

⒈直接证明

⑴综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。

⑵分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。

2.间接证明------反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

附:数学归纳法(仅限理科)

一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:

⑴证明当 取第一个值 是命题成立;

⑵假设当 命题成立,证明当 时命题也成立。

那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。

这种证明方法叫数学归纳法。

注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;

3 的取值视题目而4 定,5 可能是1,6 也可能是2等。

第十六部分 理科选修部分

1. 排列、组合和二项式定理

⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;

⑵组合数公式: (m≤n), ;

⑶组合数性质: ;

⑷二项式定理:

①通项: ②注意二项式系数与系数的区别;

⑸二项式系数的性质:

①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;

(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。

2. 概率与统计

⑴随机变量的分布列:

①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;

②离散型随机变量:

X x1 X2 … xn …

P P1 P2 … Pn …

期望:EX= x1p1 + x2p2 + … + xnpn + … ;

方差:DX= ;

注: ;

③两点分布:

X 0 1 期望:EX=p;方差:DX=p(1-p).

P 1-p p

4 超几何分布:

一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。

称分布列

X 0 1 … m

P …

为超几何分布列, 称X服从超几何分布。

⑤二项分布(独立重复试验):

若X~B(n,p),则EX=np, DX=np(1- p);注: 。

⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。

注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。

⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。

⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;

(6)正态曲线的性质:

①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;

③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;

5 当 一定时,6 曲线随 质的变化沿x轴平移;

7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;

越小,曲线越“高瘦”,表示总体分布越分散。

注:P =0.6826;P =0.9544

P =0.9974

欢迎采纳 祝你幸福

我想知道高考数学的数列经常和哪些知识点混在一起考?或者平时的数列题目经常和哪些知识点混在一起考?

重点掌握等差数列和等比数列的求法和其性质,学会如何求通项公式an以及前n项和Sn,掌握常见的求通项公式的方法(定义法、构造法、猜想和数学归纳法等),熟练掌握Sn的求法(主要有几种方法:定义法(等差数列和等比数列)、叠加法、错位相减法(一个等差数列乘以一个等比数列)、分组求和法(一般是一个等比数列加上一个等差数列)、裂项相消法(如1/(1*2)+1/(2*3)+……+1/n(n+)=1-1/2+1/2-1/3+……+1/n-1/(n+1)=1-1/(n+1)=n/(n+1) 其实就是运用了公式:

1/n(n+1)=1/n-1/(n+1) 这就是裂项)、套用公式法(如已知an=n^2 求sn ,便可运用公式:1^2+2^2+3^2+……+n^2=n(n+1)(2n+1) 这种只能靠记住一下常用公式)除此之外,还有其他的一些方法,靠你在实战中去不断总结吧! )最后强调一句,做多点练习必不可少的!

祝你学习顺利!

数列为什么不能取负数

通过广东高考卷07---10四年情况来看,数列部分大题目(10年没有大题目)都是以函数或一元二次方程为载体,(通常都在最后一题)主要考点是以求构造法求递推数列通项公式,数列不等式证明(归纳法,放缩法),数列求和三类为主。小题目主要在选择题上通常是等差等比数列基本性质予以考察。

高中三年数学有多少个知识点

数列当中每一项的值是可以为负数的,当然也可以为正数,甚至也可以为零。

比如说常数数列里面,可以每一项都为同一个常数值,比如{-4,-4,-4,-4,-4……},也可能是等差数列里面出现负数,比如{3,2,1,0,-1,-2,-3……}等等等等。

数列里面的每一项可以是负数,只不过是数列的项数必须是非负正整数而已,注意两者区分就可以。

数列中的数可以是负数数列的下标只能是正整数,因为下标是其项数,随着项数的变化数列的值也在变化,所以数列是项数的函数,也称为整标函数。

有序数列可以是两个负数,有序数列是有一定规律的数列,有正数,有负数,满足数列有序就可以。

数列的重要性

数列的考察可以贯穿许多知识点,例如解析几何的点列问题、导数的证明数列不等式等,若能借助数列中的放缩技巧稍作处理,就会达到“巧解”题目的效果。

除了高考,数列也是各省份数学竞赛、全国高中数学联赛的重点之一,地位堪比解析几何,若因高考数列不难而轻视数列,而导致在联赛中失利,那就非常可惜了。

数列是高考中常考的一类知识点,题型主要有填空和解答题两种,而且经常以解答题(甚至是压轴题)的形式出现,因此重要性不言而喻。

高考数学必考知识点归纳总结

与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。接下来是小编为大家整理的高三数学知识点梳理,希望大家喜欢!

高三数学知识点梳理一 

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

高三数学知识点梳理二

随机抽样

简介

(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;

优点:操作简便易行

缺点:总体过大不易实行

方法

(1)抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)

(2)随机数法

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

分层抽样

简介

分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

整群抽样

定义

什么是整群抽样

整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

优缺点

整群抽样的优点是实施方便、节省经费;

整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

实施步骤

先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

一、确定分群的标注

二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

三、据各样本量,确定应该抽取的群数。

四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

与分层抽样的区别

整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

系统抽样

定义

当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

步骤

一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);

(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

高三数学知识点梳理三 

(一)导数第一定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义

(二)导数第二定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义

(三)导函数与导数

如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

高三数学知识点梳理四

1.数列的定义

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

2.数列的分类

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.

3.数列的通项公式

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.

再强调对于数列通项公式的理解注意以下几点:

(1)数列的通项公式实际上是一个以正整数集N_它的有限子集{1,2,…,n}为定义域的函数的表达式.

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.

如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.

4.数列的图象

对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:

序号:1234567

项:45678910

这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.

由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.

数列是一种特殊的函数,数列是可以用图象直观地表示的.

数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.

把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.

5.递推数列

一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①

数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。

与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。接下来是小编为大家整理的高三数学知识点梳理,希望大家喜欢!

高三数学知识点梳理一 

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

高三数学知识点梳理二

随机抽样

简介

(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;

优点:操作简便易行

缺点:总体过大不易实行

方法

(1)抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)

(2)随机数法

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

分层抽样

简介

分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

整群抽样

定义

什么是整群抽样

整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

优缺点

整群抽样的优点是实施方便、节省经费;

整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

实施步骤

先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

一、确定分群的标注

二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

三、据各样本量,确定应该抽取的群数。

四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

与分层抽样的区别

整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

系统抽样

定义

当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

步骤

一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);

(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

高三数学知识点梳理三 

(一)导数第一定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义

(二)导数第二定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义

(三)导函数与导数

如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

高三数学知识点梳理四

1.数列的定义

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

2.数列的分类

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.

3.数列的通项公式

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.

再强调对于数列通项公式的理解注意以下几点:

(1)数列的通项公式实际上是一个以正整数集N_它的有限子集{1,2,…,n}为定义域的函数的表达式.

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.

如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.

4.数列的图象

对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:

序号:1234567

项:45678910

这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.

由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.

数列是一种特殊的函数,数列是可以用图象直观地表示的.

数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.

把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.

5.递推数列

一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①

数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。

与高一高二不同之处在于,此时复习力学部

2020高中数学等比数列教案设计大全

高考数学知识点总结:集合知识点汇总

一.知识归纳:

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N.

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)并集:A∪B={x| x∈A或x∈B}

5)补集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,则? A ;

②若, ,则 ;

③若且 ,则A=B(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与的区别。

4.有关子集的几个等价关系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

高考数学必修三复习知识点

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高考高三数学必修三复习知识点

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

(一)、高考数学知识点总结及公式大全 (二)、高考数学不好可以报数学师范吗 (三)、高考数学好可以报什么专业 (四)、高考数学造句,用高考数学造句 (五)、宁夏高考最高分是谁,2022年宁夏高考状元名单分数学校 (六)、内蒙古高考最高分是谁,2022年内蒙古高考状元名单分数学校 (七)、西藏高考最高分是谁,2022年西藏高考状元名单分数学校 (八)、新疆高考最高分是谁,2022年新疆高考状元名单分数学校 (九)、河南高考最高分是谁,2022年河南高考状元名单分数学校 (十)、贵州高考最高分是谁,2022年贵州高考状元名单分数学校

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 ;

 教案中对每个课题或每个课时的教学内容,教学步骤的安排, 教学 方法 的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。接下来是我为大家整理的2020高中数学等比数列教案设计大全,希望大家喜欢!

 2020高中数学等比数列教案设计大全一

 教学目标

 知识与技能:理解并掌握等比数列的定义和通项公式,并加以初步应用。

 过程与方法:通过概念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的能力,增强应用意识。

 情感态度与价值观:在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。

 教学重点和难点

 教学重点:等比数列的概念的形成与深化;等比数列通项公式的推导及应用。

 教学难点:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。

 教学过程

 (一)等比数列的概念

 1、创设情境,引入概念

 引例1: 国际象棋 起源于印度,关于国际象棋有这样一个 传说 ,国王要奖励国际象棋的发明者,问他有什么要求,发明者说:“请在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒麦子,第三个格子上放4粒麦子,第四个格子上放8粒麦子,依次类推,直到第64个格子放满为止。” 国王慷慨地答应了他。你认为国王有能力满足上述要求吗?

 所构成的数列:1,2,4,8,16,32,…

 引例2:某轿车的售价约36万元,年折旧率约为10%(就是说这辆车每年减少它的价值的10%),那么该车从购买当年算起,逐年的价值依次为:

 引例3:《庄子·天下篇》曰:“一尺之棰,日取其半,万世不竭.”

 如果把“一尺之棰”看成单位”1”,你能用一个数列来表达这句话的含义吗?“一尺长的木棒,每日取其一半,永远也取不完”

 等比数列:一般的,如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。(q≠0且an ≠0 )

 2、抓住本质,理解概念

 试判断下列数列是不是等比数列,如果是求出公比。

 (1) 1,3,9,27,81,243,…(公比为3)

 (2) 1,1,1,1,... (公比为1)

 (3) a, a, a, a,…(不一定)

 (4) 1, 6, 36, 0,…(不是)

 (5) ,3,6,12… …

 (二)、等比数列通项公式的推导

 演绎推理论证(累乘法)

 设a1,a2,a3…是公比为q的等比数列,则由定义得:

 ……………………………………(1)

 ……………………………………(2)

 ……………………………………(n-1)

 问:结合求等差数列的通项公式的方法,如何求得等比数列的通项公式?

 由定义式得:(n-1)个等式

2020高中数学等比数列教案设计大全二

 教材分析:

 1、内容简析:

 本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。

 2、教学目标确定:

 从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质。从而可以确定如下教学目标(三维目标):

 第一课时:

 (1)理解等比数列的概念 ,掌握等比数列的通项公式及公式的推导

 (2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等 逻辑思维 能力

 (3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识

 第二课时:

 (1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质

 (2)运用等比数列的定义及通项公式解决问题,增强学生的应用

 3、教学重点与难点:

 第一课时:

 重点:等比数列的定义及通项公式

 难点:应用等比数列的定义及通项公式,解决相关简单问题

 第二课时:

 重点:等比中项的理解与运用,及等比数列定义及通项公式的应用

 难点:灵活应用等比数列的定义及通项公式、性质解决相关问题

 学情分析:

 从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋 故事 中的问题,学生还是不能解决,存在疑问。本课正是由此入手来引发学生的认知冲突,产生求知的欲望。而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。

 高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不够,思维能力比较欠缺,他们重视具体问题的运算而轻视对问题的抽象分析。同时,高一阶段又是学生形成良好的思维能力的关键时期。因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。

 多数学生愿意积极参与,积极思考,表现自我。所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。这也体现了教学工作中学生的主体作用。

 教法选择与学法指导:

 由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握数列的相关知识。因此,在教法和学法上可做如下考虑:

 1、教法:采用问题启发与比较探究式相结合的教学方法

 教法构思如下:提出问题 引发认知冲突 观察分析 归纳概括 得出结论 总结 提高。在教师的精心组织下,对学生各种能力进行培养,并以促进学生发展,又以学生的发展带动其学习。同时,它也能促进学生学会如何学习,因而特别有利于培养学生的探索能力。

 2、学法指导:

 学生学习的目的在于学会学习、思考,达到创新的目的,掌握科学有效的 学习方法 ,可增强学生的学习信心,培养其学习兴趣,提高学习效率,从而激发强烈的学习积极性。我考虑从以下几方面来进行学法指导:

 把隐含在教材中的思想方法显化。如等比数列通项公式的推导体现了从特殊到一般的方法。其通项公式 是以n为字变量的函数,可利用函数思想来解决数列有关问题。思想方法的显化对提高学生数学修养有帮助。

 注重从科学方法论的高度指导学生的学习。通过提问、分析、解答、总结,培养学生发现问题、分析问题、解决问题的能力。训练逻辑思维的严密性和深刻性的目的。

 教学过程设计:

 第一课时

 1、创设情境,提出问题 (阅读本章引言并打出幻灯片)

 情境1:本章引言内容

 提出问题:同学们,国王有能力满足发明者的要求吗?

 引导学生写出各个格子里的麦粒数依次为:

 1,2, ……, (1)

 于是发明者要求的麦粒总数是

 情境2:某人从银行贷款10000元人民币,年利率为r,若此人一年后还款,二年后还款,三年后还款,……,还款数额依次满足什么规律?

 10000(1+r),10000 ,10000 ,…… (2)

 情境3:将长度为1米的木棒取其一半,将所得的一半再取其一半,再将所得的木棒继续取其一半,……各次取得的木棒长度依次为多少? …… (3)

 问:你能算出第7次取一半后的长度是多少吗?观察、归纳、猜想得

 2、自主探究,找出规律:

 学生对数列(1),(2),(3)分析讨论,发现共同特点:从第二项起,每一项与前一项的比都等于同一常数。也就是说这些数列从第二项起,每一项与前一项的比都具有“相等”的特点。于是得到等比数列的定义:

 一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。这个常数叫做等比数列的公比,公比常用字母 表示,即 。

 如数列(1),(2),(3)都是等比数列,它们的公比依次是2,1+r,

 点评:等比数列与等差数列仅一字之差,对比知从第二项起,每一项与前一项之“差”为常数,则为等差数列,之“比”为常数,则为等比数列,此常数称为“公差”或“公比”。

 3、观察判断,分析总结:

 观察以下数列,判断它是否为等比数列,若是,找出公比,若不是,说出理由,然后回答下面问题:

 1,3,9,27,……

 ……

 1,-2,4,-8,……

 -1,-1,-1,-1,……

 1,0,1,0,……

 思考:①公比 能为0吗?为什么?首项能为0吗?

 ②公比 是什么数列?

 ③ 数列递增吗? 数列递减吗?

 ④等比数列的定义也恰好给出了等比数列的递推关系式:

 这一递推式正是我们证明等比数列的重要工具。

 选题分析;因为等差数列公差 可以取任意实数,所以学生对公比 往往忘却它不能取0和能取1的特殊情况,以致于在不为具体数字(即为字母运算)时不会讨论以上两种情况,故给出问题以揭示学生对公比 有防患意识,问题③是让学生明白 时等比数列的单调性不定,而 时数列为摆动数列,要注意与等差数列的区别。

 备选题:已知 则 …… ,……成等比数列的从要条件是什么?

 4、观察猜想,求通项:

 方法1:由定义知道 ……归纳得:等比数列的通项公式为:

 (说明:推得结论的这一方法称为归纳法,不是公式的证明,要想对这一方式的结论给出严格的证明,需在学习数学归纳法后完成,现阶段我们只承认它是正确的就可以了)

 方法2:迭代法

 根据等比数列的定义有

 ……

 方法3:由递推关系式或定义写出: …… ,通过观察发现 …… ……

 ,即:

 (此证明方法称为“累商法”,在以后的数列证明中有重要应用)

 公式 的特征及结构分析:

2020高中数学等比数列教案设计大全三

 (一)教学目标

 1`.知识与技能:理解等比数列的概念;掌握等比数列的通项公式;理解这种数列的模型应用.

 2.过程与方法:通过丰富实例抽象出等比数列模型,经历由发现几个具体数列的等比关系,归纳出等比数列的定义,通过与等差数列的通项公式的推导类比,探索等比数列的通项公式.

 3.情态与价值:培养学生从实际问题中抽象出数列模型的能力.

 (二)教学重、难点

 重点:等比数列的定义和通项公式

 难点:等比数列与指数函数的关系

 (三)学法与教学用具

 学法:首先由几个具体实例抽象出等比数列的模型,从而归纳出等比数列的定义;与等差数列通项公式的推导类比,推导等比数列通项公式。

 教学用具:投影仪

 (四)教学设想

 [创设情景] 分析书上的四个例子,各写出一个数列来表示

 [探索研究]

 四个数列分别是①1, 2, 4, 8, …

 ②1, , , ,…

 ③1,20 ,202 ,203 ,…

 ④10000×1.0198,10000×1.01982,10000×1.01983 10000×1.0,10000×1.01985

 观察四个数列:

 对于数列①,从第2项起,每一项与前一项的比都等于2

 对于数列②,从第2项起,每一项与前一项的比都等于

 对于数列③,从第2项起,每一项与前一项的比都等于20

 对于数列④,从第2项起,每一项与前一项的比都等于1.0198

 可知这些数列的共同特点:从第2项起, 每一项与前一项的比都等于同一常数.

 于是得到等比数列的定义:

 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示(q≠0)

 因此,以上四个数列均是等比数列,公比分别是2, ,20,1.0198.

 与等差中项类似,如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等差中项,这时,a,b一定同号,G2=ab

 在归纳等比数列公式时,让学生先回忆等差数列通项公式的归纳,类比这个过程,归纳如下:a2=a1q

 a3=a2q=(a1q)q=a1q2

 a4=a3q=(a1q2)q=a1q3

2020高中数学等比数列教案设计大全相关 文章 :

1. 高中数学集合教案设计

2. 高考数学集合教案大全

3. 高中数学必修5等比数列知识点梳理

4. 高中数学无穷递降等比数列求和公式

5. 高一数学等比数列知识点总结

6. 高中数学教学计划

7. 数学教学计划5篇最新精选文章集锦

8. 高中数学教师教学工作总结

9. 2020高中教师述职总结报告模板五篇

10. 怎么用excel自动填充求等比数列

文章标签: # 数列 # 函数 # 公式