您现在的位置是: 首页 > 教育政策 教育政策

高考数学必修一-高考数学必修一和必修二各占多少分

tamoadmin 2024-08-18 人已围观

简介1.高中数学必修一哪些章节比较难?2.高一高二高三数学分别学什么3.高一数学必修一知识点梳理4.高一数学必修一必考知识点总结分享高中数学必修一哪些章节比较难?高中数学章节难度排行:高中数学必修一,是高中部分第二简单的课本。第一简单是必修三。必修一的知识会揉在20题圆锥曲线,21题导数,(选做)。数学必修从难到易排行。必修1:函数。整个高中数学的基石,也几乎是每个学校最先讲的一本书。学完你会发现原来

1.高中数学必修一哪些章节比较难?

2.高一高二高三数学分别学什么

3.高一数学必修一知识点梳理

4.高一数学必修一必考知识点总结分享

高中数学必修一哪些章节比较难?

高考数学必修一-高考数学必修一和必修二各占多少分

高中数学章节难度排行:高中数学必修一,是高中部分第二简单的课本。第一简单是必修三。必修一的知识会揉在20题圆锥曲线,21题导数,(选做)。

数学必修从难到易排行。

必修1:函数。

整个高中数学的基石,也几乎是每个学校最先讲的一本书。

学完你会发现原来数学变了,不再是把公式和结论搞明白就能考好的事。

主要是抽象。一些题目看搜题软件的结果,完全是迷的。

高中数学最难的板块是导数,其次是圆锥曲线,第三个板块难的是不等式,第四个板块难度是基本初等函数,第五个板块是数列第六个板块是平面向量。

高一高二高三数学分别学什么

高一高二高三数学是指《高中数学必修一》《高中数学必修二》《高中数学必修三》《高中数学必修四》,具体如下:

《高中数学必修一》:是高中数学学习阶段顺序必修的第一本教学资料。是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心。

《高中数学必修二》,主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。是2007年9月由人民教育出版社出版的图书,作者是王申怀。

《高中数学必修三》:主要内容是对算法,统计,概率知识的讲解与总结。是新课标高中数学必修系列的第3本书籍,分为A、B两版,由人民教育出版社出版发行。

4、《高中数学必修四》:数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。

高一数学必修一知识点梳理

 想了解高一数学知识,学习巩固数学的小伙伴,赶紧过来瞧一瞧。下面由我为你精心准备了“高一数学必修一知识点梳理”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!

高一数学必修一知识点梳理

  1.函数的奇偶性。

 (1)若f(x)是偶函数,那么f(x)=f(-x)。

 (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

 (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

 (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

 (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

  2.复合函数的有关问题。

 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

 (2)复合函数的单调性由“同增异减”判定。

  3.函数图像(或方程曲线的对称性)。

 (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。

 (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。

 (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

 (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。

 (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。

  4.函数的周期性。

 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。

 (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。

 (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。

 (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。

  5.判断对应是否为映射时,抓住两点。

 (1)A中元素必须都有象且唯一。

 (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。

  6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  7.对于反函数,应掌握以下一些结论。

 (1)定义域上的单调函数必有反函数。

 (2)奇函数的反函数也是奇函数。

 (3)定义域为非单元素集的偶函数不存在反函数。

 (4)周期函数不存在反函数。

 (5)互为反函数的两个函数具有相同的单调性。

 (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

  8.处理二次函数的问题勿忘数形结合。

 二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。

  9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。

  10.恒成立问题的处理方法。

 (1)分离参数法。

(2)转化为一元二次方程的根的分布列不等式(组)求解。

拓展阅读:学习数学的方法

  1.树立学好高中数学的信心。

 进入高中就必须树立正确的学习目标和远大的理想。激励自己积极思考,勇于进取,培养学习数学的兴趣,树立学好数学的信心。

2.先看笔记后做作业。

 有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

  3.做题之后加强反思。

 学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

  4.主动复习总结提高。

 进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

  5.积累资料随时整理。

 要注意积累复习资料。把课堂笔记,练习,单元测试,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。

  6.跳出永无止境的题海。

 省下时间,把精力花在研究精题上。最大限度地利用两大类精题:一类是涵盖了多项考点的母题,一类是同一题型中自己频率较高的错题。

  7.总结数学规律。

 数学并不难,其实就是按规律做题而已。道理很简单,因为出题的人就是按规律出题的。所以说只要掌握了规律,就不用怕了,关键就在于找规律。同一类型的题目,这次错了,总结出规律来下次就会做了。规律越来越多,就像有更多的钥匙,面对各种各样的锁,也就不怕了。别人给你总结好了,你要再总结一次,这样,它才能成为你的,我们的数学就建立在以前数学家总结的规律上。

高一数学必修一必考知识点总结分享

高一数学必修一必考知识点总结分享 篇1

 1、函数知识:

 基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

 2、向量知识:

 向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

 3、不等式知识:

 突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

 4、立体几何知识:

 20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

 5、解析几何知识:

 小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

 6、导数知识:

 导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

 7、开放型创新题:

 答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。

 高一数学必修一必考知识点总结分享 篇2

 反比例函数

 形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

 自变量x的取值范围是不等于0的一切实数。

 反比例函数图像性质:

 反比例函数的图像为双曲线。

 由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

 上面给出了k分别为正和负(2和—2)时的函数图像。

 当K>0时,反比例函数图像经过一,三象限,是减函数

 当K<0时,反比例函数图像经过二,四象限,是增函数

 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

 知识点:

 1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

 2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

 高一数学必修一必考知识点总结分享 篇3

 1、函数的奇偶性

 (1)若f(x)是偶函数,那么f(x)=f(—x);

 (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

 (3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

 (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

 (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

 2、复合函数的有关问题

 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

 (2)复合函数的单调性由“同增异减”判定;

 3、函数图像(或方程曲线的对称性)

 (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

 (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

 (3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

 (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

 (5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

 (6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

 4、函数的周期性

 (1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

 (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

 (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

 (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

 (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

 (6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

 5、方程k=f(x)有解k∈D(D为f(x)的值域);

 6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

 7、(1)(a>0,a≠1,b>0,n∈R+);(2)l og a N=(a>0,a≠1,b>0,b≠1);

 (3)l og a b的符号由口诀“同正异负”记忆;(4)a log a N= N(a>0,a≠1,N>0);

 8、判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

 9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

 10、对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)、

 11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

 12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的.范围问题

 13、恒成立问题的处理方法:

 (1)分离参数法;

 (2)转化为一元二次方程的根的分布列不等式(组)求解;

 高一数学必修一必考知识点总结分享 篇4

 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

 右图给出对于不同大小a所表示的函数图形:

 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

 (1)对数函数的定义域为大于0的实数集合。

 (2)对数函数的值域为全部实数集合。

 (3)函数总是通过(1,0)这点。

 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

 (5)显然对数函数。

 高一数学必修一必考知识点总结分享 篇5

 1、“包含”关系—子集

 注意:有两种可能

 (1)A是B的一部分;

 (2)A与B是同一集合。

 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

 2、“相等”关系:A=B(5≥5,且5≤5,则5=5)

 实例:设A={x|x2—1=0}B={—1,1}“元素相同则两集合相等”

 即:①任何一个集合是它本身的子集。A?A

 ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

 ③如果A?B,B?C,那么A?C

 ④如果A?B同时B?A那么A=B

 3、不含任何元素的集合叫做空集,记为Φ

 规定:空集是任何集合的子集,空集是任何非空集合的真子集。

 有n个元素的集合,含有2n个子集,2n—1个真子集

 4、集合与元素

 一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。

 知识点2、解集合问题的关键

 解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合,比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等

 高一数学必修一必考知识点总结分享 篇6

 基本初等函数

 一、指数函数

 (一)指数与指数幂的运算

 1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

 当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

 注意:当是奇数时,当是偶数时,

 2、分数指数幂

 正数的分数指数幂的意义,规定:

 0的正分数指数幂等于0,0的负分数指数幂没有意义

 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

 3、实数指数幂的运算性质

 (二)指数函数及其性质

 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

 注意:指数函数的底数的取值范围,底数不能是负数、零和1。

 2、指数函数的图象和性质

 高一数学必修一必考知识点总结分享 篇7

 知识点总结

 本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

 一、函数的单调性

 1、函数单调性的定义

 2、函数单调性的判断和证明:

 (1)定义法

 (2)复合函数分析法

 (3)导数证明法

 (4)图象法

 二、函数的奇偶性和周期性

 1、函数的奇偶性和周期性的定义

 2、函数的奇偶性的判定和证明方法

 3、函数的周期性的判定方法

 三、函数的图象

 1、函数图象的作法

 (1)描点法

 (2)图象变换法

 2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

 常见考法

 本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

 误区提醒

 1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

 2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

 3、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

 4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

文章标签: # 函数 # 必修 # 集合