您现在的位置是: 首页 > 教育政策 教育政策

广东高考数学真题解析-高考广东理科数学答案

tamoadmin 2024-09-24 人已围观

简介1.广东省21年高考理科数学考110怎么样2.2019年高考理科数学全国一卷21题,p1不是等于0吗3.今年广东高考理科数学第十题答案是多少?网上查不到.广东省21年高考理科数学考110怎么样较好。根据调查广东省21年高考的相关资料得知,广东省21年高考理科数学考110是一个比较好的成绩了。广东,简称“粤”,中华人民共和国省级行政区,省会广州。因古地名广信之东,故名“广东”。位于南岭以南,南海之滨

1.广东省21年高考理科数学考110怎么样

2.2019年高考理科数学全国一卷21题,p1不是等于0吗

3.今年广东高考理科数学第十题答案是多少?网上查不到.

广东省21年高考理科数学考110怎么样

广东高考数学真题解析-高考广东理科数学答案

较好。根据调查广东省21年高考的相关资料得知,广东省21年高考理科数学考110是一个比较好的成绩了。广东,简称“粤”,中华人民共和国省级行政区,省会广州。因古地名广信之东,故名“广东”。位于南岭以南,南海之滨,与香港、澳门、广西、湖南、江西及福建接壤,与海南隔海相望。

2019年高考理科数学全国一卷21题,p1不是等于0吗

首先要告诉你的是,p1=3/65535

然后我觉得你可能没有看懂pi的含义,仔细看,是“甲药的累计得分为i……”而不是“甲药的最终得分为i”,这两者是有区别的。累计得分不一定是最终得分,而最终得分一定是累计得分。

(接下来可能和你的问题有点不相符合,如果有时间就慢慢看吧,或者直接跳到倒数第三段,但是这样可能会有点看不懂)

累计得分是什么意思,是我们实验做到这个时候的得分,或者可以理解为实验当前得分。比如我们初始得分为4对吧,然后我们做两次实验假设都-1,那么我们现在累计得分就为2,这时候p2表示我们把实验做完后认为甲药更有效的概率(这里表述稍微有点问题,p2是不会随我们实验情况改变的)

而当累计得分为0时,一定会满足乙药治愈的白鼠比甲药多4只,试验停止,认为乙药更有效,所以p0=0,p8也是同理。其实最终得分只有0或8两种情况。

那么如果我们求出了p4的值,就可以不用做实验预估出实验失败的概率(因为题目中甲药治愈率低,所以认为甲药更有效就是错误结论),这就是这道题目最后一问的目的。

所以p1也不等于0,因为就算现在甲药得分为1,甲药也有可能被认为更有效(比如接下来7次实验甲药都+1分),但这种概率是奇低的。

而如果当前得分为i,下一次试验的三种结果:-1,0,1 的概率分别对应题目中的a,b,c。如果得-1分,那么接下来累计得分就为pi-1,pi 的概率自然要受到 pi-1 的影响,所以pi要加上a pi-1(下一次为i-1的概率×如果累计得分为i-1认为甲药有效的概率)。同理要加上b pi和c pi+1,这就是题目中pi = a pi-1 + b pi + c pi+1的由来。

所以其实题目中“p0=0,p8=1,pi = a pi-1 + b pi + c pi + 1”都是可以求,不用给出的,不过如果这样做出卷老师可能性命不保 ̄  ̄)

今年广东高考理科数学第十题答案是多少?网上查不到.

2009年广东高考数学理科试题和答案(答案已更新)

2009-6-15 10:36:00

2009年普通高等学校招生全国统一考试(广东卷)

数学(理科)参考答案

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 已知全集 ,集合 和 的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有

A. 3个 B. 2个

C. 1个 D. 无穷多个

解析由 得 ,则 ,有2个,选B.

2. 设 是复数, 表示满足 的最小正整数 ,则对虚数单位 ,

A. 8 B. 6 C. 4 D. 2

解析 ,则最小正整数 为4,选C.

3. 若函数 是函数 的反函数,其图像经过点 ,则

A. B. C. D.

解析 ,代入 ,解得 ,所以 ,选B.

4.已知等比数列 满足 ,且 ,则当 时,

A. B. C. D.

解析由 得 , ,则 , ,选C

5. 给定下列四个命题:

①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

③垂直于同一直线的两条直线相互平行;

④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,为真命题的是

A. ①和② B. ②和③ C. ③和④ D. ②和④

解析选D.

6. 一质点受到平面上的三个力 (单位:牛顿)的作用而处于平衡状态.已知 , 成 角,且 , 的大小分别为2和4,则 的大小为

A. 6 B. 2 C. D.

解析 ,所以 ,选D.

7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有

A. 36种 B. 12种 C. 18种 D. 48种

解析分两类:若小张或小赵入选,则有选法 ;若小张、小赵都入选,则有选法 ,共有选法36种,选A

8.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为 (如图2所示).那么对于图中给定的 ,下列判断中一定正确的是

A. 在 时刻,甲车在乙车前面

B. 时刻后,甲车在乙车后面

C. 在 时刻,两车的位置相同

D. 时刻后,乙车在甲车前面

解析由图像可知,曲线 比 在0~ 、0~ 与 轴所围成图形面积大,则在 、 时刻,甲车均在乙车前面,选A

二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.

(一)必做题(9 ~ 12题)

9. 随机抽取某产品 件,测得其长度分别为 ,则图3所示的程序框图输出的 , 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”)

解析 ;平均数

10. 若平面向量 , 满足 , 平行于 轴, ,则

解析 或 ,则 或 .

11.巳知椭圆 的中心在坐标原点,长轴在 轴上,离心率为 ,且 上一点到 的两个焦点的距离之和为12,则椭圆 的方程为 .

解析 , , , ,则所求椭圆方程为 .

12.已知离散型随机变量 的分布列如右表.若 , ,则 , .

解析由题知 , , ,解得 , .

(二)选做题(13 ~ 15题,考生只能从中选做两题)

13.(坐标系与参数方程选做题)若直线 ( 为参数)与直线 ( 为参数)垂直,则 .

解析 ,得 .

14.(不等式选讲选做题)不等式 的实数解为 .

解析 且 .

15.(几何证明选讲选做题)如图4,点 是圆 上的点, 且 , 则圆 的面积等于 .

解析解法一:连结 、 ,则 ,∵ , ,∴ ,则 ;解法二: ,则 .

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)

已知向量 与 互相垂直,其中 .

(1)求 和 的值;

(2)若 ,求 的值.

解:(1)∵ 与 互相垂直,则 ,即 ,代入 得 ,又 ,∴ .

(2)∵ , ,∴ ,则 ,∴ .

17.(本小题满分12分)

根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间 , , , , , 进行分组,得到频率分布直方图如图5.

(1)求直方图中 的值;

(2)计算一年中空气质量分别为良和轻微污染的天数;

(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.

(结果用分数表示.已知 , , , )

解:(1)由图可知 ,解得 ;

(2) ;

(3)该城市一年中每天空气质量为良或轻微污染的概率为 ,则空气质量不为良且不为轻微污染的概率为 ,一周至少有两天空气质量为良或轻微污染的概率为 .

18.(本小题满分14分)

如图6,已知正方体 的棱长为2,点 是正方形 的中心,点 、 分别是棱 的中点.设点 分别是点 , 在平面 内的正投影.

(1)求以 为顶点,以四边形 在平面 内的正投影为底面边界的棱锥的体积;

(2)证明:直线 平面 ;

(3)求异面直线 所成角的正弦值.

解:(1)依题作点 、 在平面 内的正投影 、 ,则 、 分别为 、 的中点,连结 、 、 、 ,则所求为四棱锥 的体积,其底面 面积为

又 面 , ,∴ .

(2)以 为坐标原点, 、 、 所在直线分别作 轴, 轴, 轴,得 、 ,又 , , ,则 , , ,

∴ , ,即 , ,

又 ,∴ 平面 .

(3) , ,则 ,设异面直线 所成角为 ,则 .

19.(本小题满分14分)

已知曲线 与直线 交于两点 和 ,且 .记曲线 在点 和点 之间那一段 与线段 所围成的平面区域(含边界)为 .设点 是 上的任一点,且点 与点 和点 均不重合.

(1)若点 是线段 的中点,试求线段 的中点 的轨迹方程;

(2)若曲线 与 有公共点,试求 的最小值.

解:(1)联立 与 得 ,则 中点 ,设线段 的中点 坐标为 ,则 ,即 ,又点 在曲线 上,

∴ 化简可得 ,又点 是 上的任一点,且不与点 和点 重合,则 ,即 ,∴中点 的轨迹方程为 ( ).

(2)曲线 ,

即圆 : ,其圆心坐标为 ,半径

由图可知,当 时,曲线 与点 有公共点;

当 时,要使曲线 与点 有公共点,只需圆心 到直线 的距离 ,得 ,则 的最小值为 .

20.(本小题满分14分)

已知二次函数 的导函数的图像与直线 平行,且 在 处取得极小值 .设 .

(1)若曲线 上的点 到点 的距离的最小值为 ,求 的值;

(2) 如何取值时,函数 存在零点,并求出零点.

解:(1)依题可设 ( ),则 ;

又 的图像与直线 平行

, ,

设 ,则

当且仅当 时, 取得最小值,即 取得最小值

当 时, 解得

当 时, 解得

(2)由 ( ),得

当 时,方程 有一解 ,函数 有一零点 ;

当 时,方程 有二解 ,

若 , ,

函数 有两个零点 ,即 ;

若 , ,

函数 有两个零点 ,即 ;

当 时,方程 有一解 , ,

函数 有一零点

综上,当 时, 函数 有一零点 ;

当 ( ),或 ( )时,

函数 有两个零点 ;

当 时,函数 有一零点 .

21.(本小题满分14分)

已知曲线 .从点 向曲线 引斜率为 的切线 ,切点为 .

(1)求数列 的通项公式;

(2)证明: .

解:(1)设直线 : ,联立 得 ,则 ,∴ ( 舍去)

,即 ,∴

(2)证明:∵

由于 ,可令函数 ,则 ,令 ,得 ,给定区间 ,则有 ,则函数 在 上单调递减,∴ ,即 在 恒成立,又 ,

则有 ,即

文章标签: # 平面 # 解析 # 直线