您现在的位置是: 首页 > 教育政策 教育政策

数学高考试卷2019,数学高考试卷2023全国甲卷

tamoadmin 2024-06-01 人已围观

简介1.2019年福建高考数学试卷试题及答案解析(答案WORD版)2.2019年四川高考数学试卷答案点评和难度解析3.2019年福建高考数学难度解析及数学试卷答案点评(word文字版下载)4.2019年广西高考数学试卷试题及答案解析(答案WORD版)5.2019年辽宁高考数学试卷试题及答案解析(答案WORD版)高中数学合集百度网盘下载链接:提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课

1.2019年福建高考数学试卷试题及答案解析(答案WORD版)

2.2019年四川高考数学试卷答案点评和难度解析

3.2019年福建高考数学难度解析及数学试卷答案点评(word文字版下载)

4.2019年广西高考数学试卷试题及答案解析(答案WORD版)

5.2019年辽宁高考数学试卷试题及答案解析(答案WORD版)

数学高考试卷2019,数学高考试卷2023全国甲卷

高中数学合集百度网盘下载

链接:提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

2019年福建高考数学试卷试题及答案解析(答案WORD版)

2019年浙江省高考信息模拟卷数学(一)

试卷分第I卷(选择题)和第II卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第I卷(选择题共40分)

一、选择题(本大题共10小题,每小题4分共40分,在每小题给出的四个选项中,只有一项

是符合题目要求的.)

1.已知集合2x,则()M{x|yx?4x?5},N{y|yln(e+1)}(CM)NRA.(1,5)B.(0,5)C.(1,5]D.(0,5]|z1|

2.若z13=?i,z21=+3i,则()|z2|A.1B.2C.3D.10|a|?b

3.已知a,b?R,则“”是a?|b|的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

4.设函数,则的奇偶性()f(x)sin(?x=+?)(?0)f(x)?A.与有关,且与有关B.与有关,但与无关C.与无关,且与无关D.与无关,但与有关?V,VV?V

5.两个几何体的三视图如图所示,记几何体的体积为12,则21()?2?2?A.B.C.D.3636?x?3y?0?

6.已知,点,则S{(x,y)|?x=+3y?63?0}P(3,3),T{N|PM=+PN0,M=?S}?x?0?ST的面积为()A.33B.6C.63D.9

7.如图,已知正四棱锥P?ABCD的各棱长均相等,M是上的动点(不包括端点),是的中点,分别记ABNAD二面角P?MN?C,P?AB?C,P?MD?C为?,?,?,则()A.?B.?C.?D.?

8.对函数f(x)x2=+aln(x4+x2+1)(x?R)的极值和最值情况,一定()A.既有极大值,也有最大值B.无极大值,但有最大值C.既有极小值,也有最小值D.无极小值,但有最小值22xyFE:+1(a=?b?0)

9.如图,点为椭圆22的右焦点,ab222My点时圆O:x+yb上一动点(轴右侧),过M作圆的切线交椭圆于A,B两点,若?ABF的周长O为3b,则椭圆的离心率为()E2253A.B.C.D.3232Rf(?x)+f(x)x2x?0

10.定义在上的可导函数f(x)满足,当时,f'(x)?x,则不等式132f(x+1)?f(2x)?+x?x的解集为()22A.[1,+?)B.(?,1]C.(?,2]D.[2,+?)第II卷(非选择题共110分)

二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.)

11.集合,,则,U{x|1=?x?9,x?N}A{1,3,5,7},B{5,6,7,8,9}AB(CA)(CB).UU?3?2

12.若sin(?),?=?(0,),则sin?,sin2?+cos?.452

13.双曲线E:4x2?y21,则渐近线方程为,以焦点为圆心,与渐近线相切得圆的面积为.

14.已知x2+x8a=+a(2+x)+a(2+x)2++a(2+x)8,则a,01287a+a+a++a+a.01278

15.甲乙两袋中各有4个大小相同,形状一样,质地均匀的小球,其中甲袋中3红1白,乙袋中3白1红,现同时从甲乙两袋中各摸出2个球交换,则交换后甲袋中红球的个数的数学期?望E(?).

16.已知满足|a|2,(a=+b)?b8,则的取值范围为.a,ba?ba

17.设函数f(x)1=?x+4?x,g(x)(a=?R),若对任意的x?(0,1),恒有f(x)?xag(x)成立,则实数的取值范围是多少?

全部题请看如下:

2019年四川高考数学试卷答案点评和难度解析

福建高考数学试卷试题及答案解析1.关注基础,凸显平稳

命题充分关注数学基础知识、基本技能和基本思想方法的考查。文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,不仅考查分值占比高,而且有机融合了与之相关的知识、技能和思想方法,从而全面地检测了考生作为未来公民所必需的数学基础。

与此同时,命题立足中学教学的实际,在试卷的题型结构、赋分比例、难度要求以及试题难易梯度等方面,都严格地遵循了《考试说明》的相关规定,并科学地继承福建省已有高考数学命题的成功经验。

2.注重综合,适度创新

命题基于学科整体意义和考生后续学习需要,立足考试内容抽样的合理性和典型性,综合考查考生知识网络和方法体系的完备性,充分体现《考试说明》中的知识、能力和思想方法等要求。

命题追求稳中求新,适度考查将已有的知识与方法迁移到新情境中解决问题的能力。如理8(文16)以等差数列和等比数列的定义为载体综合考查推理论证能力、运算求解能力和创新意识;理10、文21(Ⅱ)(ⅱ)分别以导数的几何意义和正弦函数的最小正周期为载体综合考查推理论证能力、特殊与一般思想、有限与无限思想和数形结合思想;理15以纠错码和异或运算为载体综合考查了阅读理解、迁移运用的能力。

3.依托本质,突出能力

命题将考查综合运用数学的知识与方法解决问题的能力置于首要的位置,依托数学知识与方法的本质含义体现“知识立意”与“能力立意”,既全面又有所侧重地考查了《考试说明》要求的“五个能力”、“两个意识”和“七个思想”。如文12依托“三角函数线”侧重考查推理论证能力、抽象概括能力和数形结合思想;文18、理16分别依托“全网传播的融合指数”和“银行卡密码”侧重考查数据处理能力、应用意识和必然与或然思想;文20(Ⅲ)依托“两点之间线段最短”侧重考查了空间想象能力、推理论证能力和化归与转化思想;理10依托“导数的几何意义”侧重考查推理论证能力、特殊与一般思想和数形结合思想;理15依托“纠错码和异或运算”侧重考查推理论证能力和创新意识;文22、理20依托“导数的综合应用”侧重考查推理论证能力、运算求解能力、创新意识、数形结合思想和分类与整合思想。

4.强调应用,彰显选拔

命题强调数学的应用,既考查了数学知识与方法在学科内的应用。如文12、文15、文21、文22、理9、理14、理19、理20,也考查了数学知识在解决实际问题中的应用;如文13、文18、理4、理15、理16。

命题立足选拔的要求,淡化层次内的区分,强化层次间的区分,合理预设各种题型的难度梯度,力求各种题型内试题难度与题序同步增加,解答题每个小题也从易到难。如文20、21、22的第(Ⅰ)和(Ⅱ)问,理19、20的第(Ⅰ)问均较易入题,余下各问则着重考查考生的自然语言、图形语言和符号语言的转换和思考的能力。

此外,命题还关注解法多样性,藉此考查不同层次考生分析问题、解决问题的能力,彰显选拔功能。

2019年福建高考数学难度解析及数学试卷答案点评(word文字版下载)

四川高考数学试卷答案点评和难度解析

高考四川卷数学学科的命题,遵循《考试大纲》及《考试说明(四川卷)》要求,继承近年来形成的命题传统,结合全省实施中学数学教学实际,体现课程改革理念,坚持平稳推进、适度创新,在充分考查基础知识、基本方法的同时,深化能力立意,注重考查考生的运算求解、推理论证等数学能力及应用意识和创新意识,突出对数学思维、数学方法和数学素养的考查。试题命制立足于学科核心和主干,重点考查支撑数学学科体系的内容,将知识、能力和素质的考查融为一体,通过适度联系与综合等方式,在知识交汇处考查学生的数学视野、探究意识和学习潜能,充分体现数学的科学价值和人文价值。试题难度设置符合高中学生数学学习现状与高考性质,试卷布局合理、问题设计科学、试题表述规范,有利于准确测试不同层次考生的学习水平。

强化主干内容,重视教材价值

全卷重视基础知识的全面考查,所涉及的知识点覆盖了整个高中数学的所有知识板块;试题突出主干知识的重点考查,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科3,9,12,15,16,19,21,文科3,13,15,17,19,21等题,全面考查函数概念、性质等基础知识,考查考生掌握函数这一核心内容相关方法及思维水平的现状;理科10,14,20,文科9,10,11,20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科8,文理科18等题,考查基本的线面关系(理科包括面面夹角的计算);理科17,文科16等题,考查了概率统计的相关知识。这样的内容设计,对高中毕业生的数学基础和素养进行了重点测试,重视对基础知识和通性通法的考查,保证了试卷的内容效度,有利于引导高中数学教学在注重基础知识的同时突出核心和主干、回归数学本质。

试题与教材联系紧密,不少题目都有教材背景,有的则直接由教材的例题或习题改编。理科1-6,8,9,11-13,16,18,21,文科1-3,5-8,11-13,16-18,20,21等题源于教材、高于教材,充分发挥了教材的示范作用。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,对中学数学教学回归教材、重视挖掘教材价值、减轻过重的学业负担、实施素质教育、促进课程改革的深化具有良好的导向作用。

2019年广西高考数学试卷试题及答案解析(答案WORD版)

点评人:

 福州八中数学高级教师周平

试卷皆于意料中, 文理难度不相同。

朴实之中显能力, 平易创新见真功。

 福建省质检文理科数学试卷总体感觉是:“平和中不失新意,朴实内彰显能力"。试卷重现对基本知识丶通性通法的考查,穾出了对主干知识的考查,具有低起点易入手、髙收尾难深入,层层深入递进,想得高分不容易的特点。大多数试题源于教材,贴近考生,符合师生预期,较为常规,对高三下一阶段复习具有非常好的导向作用。

  一.试题考查的知识点和主干知识统计分析

 试卷从结构丶题型丶题量及分值分布等都与近年全国卷相同。由于第一轮复习未结朿,概率统计内容未列入这次考查范围,所以与正常的全国卷相比,对知识点及主干知识考查有所侧重与欠缺,特别是实际应用问题(除文科外)还未涉及。

 1.突出对主干知识的重点考查

 试卷对数列、三角:、立几、解几及函数导数等主干知识,基本上各占22分,共占110分(选填题各两道占10分,解答题各一道占12分。文科没考排列题改为函数建模问题,函数多达27分)。

 数列考查等差等比数列、和项关系递推公式及求和;三角解答题以解三角形两类题型出现,加上三角恒等变换与图象性质两道选填题;立几考查三视图、空间几何体的计算及平行`垂直的证明:解几考查三种圆锥曲线与直线,以直线与椭圆作为解答题;函数则考查零点:导数、单调性与最值等问题,仍属圧轴题。

 2.不忘对其他知识的全面覆盖

 试卷在选填题中,对复数,集合,排列组合(理科),线性规划,平面向量等都做了考查,共30分,属容易题或中档题。

 3.三选一题中,几何证明选讲,极坐标参数方程及含绝对值不等式都属中档题。

 4.文理科题目除两道选择题完全相同后,全无相同,难度存在较明显差异。

 总之,不论选填题还是解答题都显得“面善”,平易近人,不需特殊技巧,有利考生正常发挥。

  二.对下一阶段备考启示

 1.重视教材的示范作用,回归课本。

 2通过分折典型问费解题过程学会解题.提高解题能力。

 3.加强数学思想方法的渗透。

 4.着眼于"理解数学i,真正理解问题的来龙去脉,而不是靠题海战术取胜。

 5.抓好解题规范,提高解题淮确率。

  ▼

 文科数学试卷

 理科数学试卷

2019年辽宁高考数学试卷试题及答案解析(答案WORD版)

高考完成了数学科目的考试,考试结束教育部考试中心的数学命题专家就对今年的数学试题进行了分析。

 总的说来,在贯彻落实《国务院关于深化考试招生制度改革的实施意见》的开局之年,高考数学重在增强基础性、综合性,着重考查学生独立思考和运用所学知识分析问题、解决问题的能力。数学试卷符合考试大纲和课程标准的各项要求,重视数学基础,注重能力立意,体现课改理念,富有时代特征。试题稳中有新,坚持多角度、多层次地考查考生的逻辑思维、运算求解、空间想象以及数据处理等能力,突出对逻辑推理、创新应用意识与中国优秀传统文化的考查,体现了数学的基础性和工具性作用。

 特点一:创新试题设计,深入考查逻辑推理能力

 数学所考查的逻辑思维、推理方法和分析能力体现了数学作为基础学科的作用,这些在个人的发展过程和认知结构的建构过程中都是必不可少的。通过加强对逻辑推理能力的考查,可以促使学生学习理性思维的方法,养成实事求是、求真务实的思想意识,使他们在今后的生活和工作中形成科学的人生态度。

 试卷充分利用学科特点,创新试题设计,深入考查逻辑推理能力。采取的主要措施有:一是设问方式创新,例如全国二卷第19题要求考生画出交线围成的正方形,不必说明画法和理由,鼓励考生动手试验,进行创新尝试;二是试题的解决方案创新,例如全国一卷理科第16题引导考生将解三角形的原理推广运用到四边形中,要求考生打破常规思路,独立思考,积极探究;三是试题素材创新,例如北京卷文科第14题突出对图形、图表语言运用的考查,需要考生从题设图表中获取并处理相关信息进行逻辑推理。试题不落俗套,考查了考生逻辑思维的系统性。四是试题情境创新,例如浙江卷文科第7题将立体几何与平面几何知识有机结合,考查考生空间想象能力和推理论证能力,对考生逻辑思维的灵活性有较高要求。

 特点二:突出实践能力考查,增强创新应用意识

 数学源于生活与实践,数学知识是解决实际问题的有力工具,数学也是培养理性思维的重要学科,对创新应用意识的形成和发展具有重要作用。

 试题重视现实生活中的热点问题,紧密结合社会实际和现实生活,考查考生运用数学工具和思想方法分析、解决问题的能力,体现了数学在解决实际问题中的重要作用和应用价值,体现了高考改革中加强实践性、应用性的要求。试卷中有很多涉及应用背景的试题,贴近考生实际,让考生深深感受到数学就在他们的身边。例如,全国一卷第19题,要求考生根据试题所给的散点图,自主选择回归方程类型,对企业投入产品的宣传费用进行预测。江苏卷第17题以山区修公路为背景,要求考生建立数学模型,适度创新,运用所学数学知识分析问题,完成山区公路设计。试题的设计使考生置身于问题情境之中,充分体现数学的应用价值,激发学生学习数学的兴趣,自觉形成创新应用意识,彰显数学的理性精神与人文情怀,进而影响学生的情感态度价值观。

 实践应用能力的培养是素质教育的根本要求,更是破除题海战术、死记硬背的有效措施,也有利于培养学生理论联系实际的思想方法和创新意识,形成良好的思维习惯。试题还突出了对实践能力的考查,要求考生动手实验,积极探索,运用所学数学知识技能和方法解决问题。例如四川卷第18题鼓励考生动手实验,在数学理性的指导下获得正确的实验结果。试题的设计有利于引导学生主动动手实验,积极思考问题。

 特点三:注重基础性考查,渗透数学传统文化

 数学各份试卷重视对数学基础的考查,试卷中考查基本概念、基本运算、基本思想方法的题目占到60%以上。同时试卷注重对高中所学内容的全面考查,在此基础上,试卷还强调对重点内容的重点考查,如在解答题中考查了函数、导数、三角函数、统计与概率、数列、立体几何、直线与圆锥曲线等中学数学重点内容。

 今年数学试卷的另一个亮点就是在基础试题中渗透中国数学文化。我国数学文化历史悠久,有许多不同于西方数学文化的鲜明特点:注重归纳、强调实用、讲究算法。中国古代数学名著《九章算术》、《数书九章》等在人类社会的发展中起着重要作用。试卷选取了体现中国古代优秀数学文化并与中学数学内容结合紧密的素材,编拟试题,要求考生运用所学的基础知识、基本思想方法去解决问题。例如全国二卷第8题的设计思路来源于《九章算术》中的“更相减损术”,湖北卷第2题选自《数书九章》中的“米谷粒分”问题。这些试题的设计让考生感受到我国古代数学的优秀传统——数学要关注生产、生活等社会问题,从而引导考生通过了解数学文化,体会数学知识方法在认识现实世界中的重要作用。在高考试题中渗透中国古代数学文化,强调中国古代数学文化的传统特色,使考生在考查过程中,潜移默化地接受我国古代数学文化的熏陶,自觉形成严谨、务实的治学态度,传承中华优秀传统文化,弘扬爱国主义精神。

 数学试卷体现了课程标准理念,能够准确区分考生,有利于科学选拔人才,有利于学生全面发展,有利于促进社会公平。试题科学规范、设计新颖,情境设置合理,引导中学数学教学重视知识的生成、发展、迁移、归纳、拓展以及文化的传承。

;

辽宁数学文科试卷首次采用全国卷(新课标2),与相比,数学试卷难度有所降低,大部分考生答起来都比较顺手,可谓给高考学子们的“征战之路”打了一剂强心针。

 以往辽宁的数学自主命题卷,都是在选择最后一题与填空的最后一题设置难点,即12题与16题,对学生考试的心理心态、解题技巧、知识掌握程度都是不小的挑战。“全国卷”的命题风格则比较“平稳”,没有偏题怪题,难度系数相对较低,特别是与往年的全国卷相比,的文科理科数学试卷都更加简单,很可能会出现140多分的试卷或者满分试卷,的平均分也会比有所提高。

 本溪市第一中学的数学老师介绍,高考数学卷,比较适合基础扎实的中等学生答卷。同时,尖子生也能发挥出应有的水平。但是拿到真正的高分也并非易事,因为的试题在命题形式上更加新颖灵活,有一定创新。

 理科数学试卷中,解析题第17题是数形结合题,第18题是茎叶图,和往常略有变化。19题立体几何中的第一问也出现了较为冷门的作图题。平时考查立体几何的首问时,以证明平行、垂直或是求体积居多,作图题平时训练相对少,有些考生因为陌生而感到不适应。

 总体来说,的语文与数学科目的总体风格都是着重考生对知识的综合掌握与运用能力,在维持试卷难度系数总体平衡的情况下,以更加灵活的命题考察学生的应变与知识运用能力。

文章标签: # 考查 # 数学 # 能力