您现在的位置是: 首页 > 教育政策 教育政策

2021年高考文科数学大纲_文数高考大纲

tamoadmin 2024-06-09 人已围观

简介1.2011高考数学考纲 江苏2.2019年高考考试大纲修改解读,高考大纲内容知识点3.高考大纲是什么?4.安徽高考文科数学考试大纲有阶乘吗5.2022高考大纲在哪里看6.2012福建省高考 文科数学考试大纲7.2023陕西成人高考考试大纲(详细)?8.高考大纲在哪里看2010年普通高等学校招生全国统一考试大纲--数学(文) (必修+选修Ⅰ) Ⅰ.考试性质 普通高等学校招生全国统一考试是由

1.2011高考数学考纲 江苏

2.2019年高考考试大纲修改解读,高考大纲内容知识点

3.高考大纲是什么?

4.安徽高考文科数学考试大纲有阶乘吗

5.2022高考大纲在哪里看

6.2012福建省高考 文科数学考试大纲

7.2023陕西成人高考考试大纲(详细)?

8.高考大纲在哪里看

2021年高考文科数学大纲_文数高考大纲

2010年普通高等学校招生全国统一考试大纲--数学(文)

(必修+选修Ⅰ)

Ⅰ.考试性质

普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度.

Ⅱ.考试要求

《普通高等学校招生全国统一考试大纲(文科·2010年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围.

数学科的考试,按照"考查基础知识的同时,注重考查能力"的原则,确立以能力立意命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养.

数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能.

一、考试内容的知识要求、能力要求和个性品质要求

1.知识要求

知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.

对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次.

(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.

(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.

(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.

2.能力要求

能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.

(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.

数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.

(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.

运算能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。

(3)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质.

空间想象能力是对空间形式的观察、分析、抽象的能力.主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换.对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.

(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模式;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明.

实践能力是将客观事物数学化的能力.主要过程是依据现实的生活背景,提炼相关的数量关系,构想数学模式,将现实问题转化为数学问题,并加以解决.

(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

创新意识是理性思维的高层表现.对数学问题的"观察、猜测、抽象、概括、证明",是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.

3.个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

二、考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架.

(1)对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.

(2)对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.

(3)对数学能力的考查,强调"以能力立意",就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.

对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际.对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性.对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算.对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合.

(4)对实践能力的考查主要采用解决应用问题的形式.命题时要坚持"贴进生活,背景公平,控制难度"的原则,试题设计要切合我国中学数学教学的实际,考虑考生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平.

(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性.精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题.

数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.

Ⅲ.考试内容

1.平面向量

考试内容:

向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.

考试要求:

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.

(2)掌握向量的加法和减法.

(3)掌握实数与向量的积,理解两个向量共线的充要条件.

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.

2.集合、简易逻辑

考试内容:

集合.子集.补集.交集.并集.

逻辑联结词.四种命题.充分条件和必要条件.

考试要求:

(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

(2)理解逻辑联结词"或"、"且"、"非"的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

3.函数

考试内容:

映射.函数.函数的单调性.奇偶性.

反函数.互为反函数的函数图像间的关系.

指数概念的扩充.有理指数幂的运算性质.指数函数.

对数.对数的运算性质.对数函数.

函数的应用.

考试要求:

(1)了解映射的概念,理解函数的概念.

(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.

(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

4.不等式

考试内容:

不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.

考试要求:

(1)理解不等式的性质及其证明.

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.

(3)掌握分析法、综合法、比较法证明简单的不等式.

(4)掌握简单不等式的解法.

(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│.

5.三角函数

考试内容:

角的概念的推广.弧度制.

任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanαcotα=1.正弦、余弦的诱导公式.

两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.

正弦定理.余弦定理.斜三角形解法.

考试要求:

(1)了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.

(2)理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义;掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义.

(6)会由已知三角函数值求角,并会用符号arcsinxarccosxarctanx表示.

(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

6.数列

考试内容:

数列.

等差数列及其通项公式.等差数列前n项和公式.

等比数列及其通项公式.等比数列前n项和公式.

考试要求:

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

7.直线和圆的方程

考试内容:

直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.

两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.

用二元一次不等式表示平面区域.简单的线性规划问题.

曲线与方程的概念.由已知条件列出曲线方程.

圆的标准方程和一般方程.圆的参数方程.

考试要求:

(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.

(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.

(3)了解二元一次不等式表示平面区域.

(4)了解线性规划的意义,并会简单的应用.

(5)了解解析几何的基本思想,了解坐标法.

(6)掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程.

8.圆锥曲线方程

考试内容:

椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.

双曲线及其标准方程.双曲线的简单几何性质.

抛物线及其标准方程.抛物线的简单几何性质.

考试要求:

(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.

(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.

(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.

(4)了解圆锥曲线的初步应用.

9(A).直线、平面、简单几何体(考生可在9(A)和9(B)中任选其一)

考试内容:

平面及其基本性质.平面图形直观图的画法.

平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.

直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.

平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.

多面体、正多面体、棱柱、棱锥、球.

考试要求:

(1)理解平面的基本性质,会用斜二侧的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.

(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念.对于异面直线的距离,只要求会计算已给出公垂线时的距离.

(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握三垂线定理及其逆定理.

(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.掌握两个平面垂直的判定定理和性质定理.

(5)会用反证法证明简单的问题.

(6)了解多面体、凸多面体的概念,了解正多面体的概念.

(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.

(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.

(9)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式.

9(B).直线、平面、简单几何体

考试内容:

平面及其基本性质.平面图形直观图的画法.

平行直线.

直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.

两个平面的位置关系.

空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.

直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.

直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.

平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.

多面体.正多面体.棱柱.棱锥.球.

考试要求:

(1)理解平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.

(2)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理,掌握直线和平面垂直的判定定理.掌握三垂线定理及其逆定理.

(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.

(4)了解空间向量的基本定理.理解空间向量坐标的概念,掌握空间向量的坐标运算.

(5)掌握空间向量的数量积的定义及其性质.掌握用直角坐标计算空间向量数量积的公式.掌握空间两点间距离公式.

(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.

(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.

(8)了解多面体、凸多面体的概念.了解正多面体的概念.

(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.

(10)了解棱锥的概念,掌握正棱锥的性质。会画正棱锥的直观图。

(11)了解球的概念.掌握球的性质.掌握球的表面积公式、体积公式

10.排列、组台、二项式定理

考试内容:

分类计数原理与分步计数原理.

排列.排列数公式.

组合.组合数公式.组合数的两个性质.

二项式定理.二项展开式的性质.

考试要求:

(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.

(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.

(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.

(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.

11.概率

考试内容:

随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.

考试要求:

(1)了解随机事件的发生存在着规律性和随机事件概率的意义.

(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.

(4)会计算事件在n次独立重复试验中恰好发生κ次的概率.

12.统计

考试内容:

抽样方法.总体分布的估计.

总体期望值和方差的估计.

考试要求:

(1)了解随机抽样,了解分层抽样的意义,会用它们对简单实际问题进行抽样.

(2)会用样本频率分布估计总体分布.

(3)会用样本估计总体期望值和方差.

13.导数

考试内容:

导数的背景.

导数的概念.

多项式函数的导数.

利用导数研究函数的单调性和极值,函数的最大值和最小值.

考试要求:

(1)了解导数概念的实际背景.

(2)理解导数的几何意义.

(3)掌握函数y=c(c为常数)和y=xn(n∈N+)的导数公式,会求多项式函数的导数.

(4)理解极大值、极小值、最小值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.

(5)会利用导数求某些简单实际问题的最大值和最小值.

Ⅳ.考试形式与试卷结构

奉上!!!!!!!!!

考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.

全试卷包括Ⅰ卷和Ⅱ卷,Ⅰ卷为选择题;Ⅱ卷为非选择题.

试卷一般包括选择题、填空题和解答题等题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程.

试卷应由容易题、中等难度题和难题组成,总体难度要适当,并以中等难度题为主

2011高考数学考纲 江苏

1月31日,2019年普通高等学校招生全国统一考试大纲正式公布。《普通高等学校招生全国统一考试大纲》是高考命题的规范性文件和标准,是考试评价、复习备考的依据。《考试大纲》明确了高考的性质和功能,规定了考试内容与形式,对实施高考内容改革、规范高考命题具有重要意义。

语文:

2019年高考语文科要求考查考生识记、理解、分析综合、鉴赏评价、表达应用和探究六种能力。

考试内容分为阅读和表达两个部分。阅读部分包括现代文阅读和古诗文阅读,表达部分包括语言文字应用和写作。

数学(理科):

高考理科数学科要求考查考生空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列 2 的内容;选考内容为《课程标准》的选修系列 4 的 “坐标系与参数方程”、“不等式选讲”等 2 个专题。

物理:

高考物理试题着重考查考生的知识、能力和科学素养,注重理论联系实际,注意物理与科学技术、社会和经济发展的联系,注意物理知识在日常学习生活、生产劳动实践等方面的广泛应用。

要考查的物理知识包括力学、热学、电磁学、光学、原子物理学、原子核物理学等部分。

化学:

高考化学科命题注重测量自主学习的能力,重视理论联系实际,关注与化学有关的科学技术、社会经济和生态环境的协调发展。

考试范围分为必考内容和选考内容。必考内容涵盖必修模块“化学 1”“化学 2”和选修模块“化学反应原理”的内容。选考内容为选修模块“物质结构与性质”和“有机化学基础”,考生从中任意选一个模块考试。

生物:

高考生物试题注重考查考生的知识、能力和素养,强调理论联系实际,关注生物学科知识在日常生活、生产实践等方面的应用。

考试范围包括必考部分和选考部分,必考部分在课程标准必修模块的范围内,选考部分在课程标准选修模块 1(生物技术实践)和选修模块 3(现代生物科技专题)的范围内。

英语:

考核内容包括:语言知识及语言运用。语言知识要求考生掌握并能运用英语语音、词汇、语法基础知识以及所学功能意念和话题,要求词汇量为3500 左右。语言运用包括听力、阅读、写作和口语。

2019年高考考试大纲修改解读,高考大纲内容知识点

2011年江苏省高考说明

数学科

一、命题指导思想

根据普通高等学校对新生文化素质的要求,20011年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据中华人民共和国教育部颁发的《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲(课程实验版)》,结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.

突出数学基础知识、基本技能、基本思想方法的考查

对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点.注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查.

2.重视数学基本能力和综合能力的考查

数学基本能力主要包括空问想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.

(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系, 并能够对空间图形进行分解和组合.

(2)抽象概括能力的考查要求是:能够通过对实例的探究发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.

(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.

(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.

(5)数据处理能力考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.

数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.

3.注重数学的应用意识和创新意识的考查

数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.

创新意识的考查要求是:能够综合、灵活运用所学的数学知识和思想方法,创造性地解决问题。

二、考试内容及要求

数学试题由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列l的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4—1《几何证明选讲》、4—2《矩阵与变换》、4—4《坐标系与参数方程》、4—5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).

对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).

了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题

理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.

掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.

具体考查要求如下:

1 必做题部分

内 容 要 求

A B C

1.集合 集合及其表示 √

子集 √

交集、并集、补集 √

2.函数概念与基本初等函数I 函数的概念 √

函数的基本性质 √

指数与对数 √

指数函数的图象和性质 √

对数函数的图象和性质 √

幂函数 √

函数与方程 √

函数模型及其应用 √

3基本初等函数Ⅱ

(三角函数)、 三角恒等变换

三角函数的有关概念 √

同角三角函数的基本关系式 √ 0

正弦、余弦的诱导公式 √

正弦函数、余弦函数、正切函数的图象与性质 √

函数y=Asin(ωx+φ)的图象与性质 √

两角和(差)的正弦、余弦及正切 √

二倍角的正弦、余弦及正切 √

积化和差、 和差化积、半角公式 √

4.解三角形 正弦定理、余弦定理及其应用 √

5.平面向量 平面向量的概念 √

平面向量的加法、减法及数乘运算 √

平面向量的坐标表示 √

平面向量的数量积 √

平面向量的平行与垂直 √

平面向量的应用 √

6.数列 数列的概念 √

等差数列 √

等比数列 √

7.不等式 基本不等式 √

一元二次不等式 √

线性规划 √

8.复数 复数的概念 √

复数的四则运算 √

复数的几何意义 √

9.导数及其应用 导数的概念 √

导数的几何意义 √

导数的运算 √

利用导数研究函数的单调性和极值 √

导数在实际问题中的应用 √

续表

内 容 要求

A B C

10.算法初步 算法的含义 √

流程图 √

基本算法语句 √

11.常用逻辑用语 命题的四种形式 √

充分条件、必要条件、充分必要条件 √

简单的逻辑联结词 √

全称量词与存在量词 √

12.推理与

证明

合情推理与演绎推理 √

分析法与综合法 √

反证法 √

13.概率、统计 抽样方法 √

总体分布的估计 √

总体特征数的估计 √

变量的相关性 √

随机事件与概率 √

古典概型 √

几何概型 √

互斥事件及其发生的概率 √

14.空间几何体 柱、锥、台、球及其简单组合体 √

柱、锥、台、球的表面积和体积 √

15.点、线、面之间的位置关系 平面及其基本性质 √

直线与平面平行、垂直的判定及性质 √

两平面平行、垂直的判定及性质 √

16.平面解析

几何初步 直线的斜率与倾斜角 √

直线方程 √

直线的平行关系与垂直关系 √

两条直线的交点 √

两点间的距离,点到直线的距离 √

圆的标准方程和一般方程 √

直线与圆、圆与圆的位置关系 √

空间直角坐标系 √

17.圆锥曲线与方程 中心在坐标原点的椭圆的标准方程与几何性质 √

中心在坐标原点的双曲线的标准方程与几何性质 √

顶点在坐标原点的抛物线的标准方程与几何性质 √

2:附加题部分

内容 要 求

A B C

选修系列2:不含选修系列

1

中的内容 1.圆锥曲线与方程

曲线与方程 √

顶点在坐标原点的抛物线的标准方程与几何性质 √

2.空间向量

与立体几何

空间向量的概念 √

空间向量共线、共面的充分必要条件

条件 √

空间向量的加法、减法及数乘运算 √

空间向量的坐标表示 √

空间向量的数量积 √

空间向量的共线与垂直 √

直线的方向向量与平面的法向量 √

空间向量的应用 √

3.导数及其应用 简单的复合函数的导数 √

定积分 √

4.推理与证明 数学归纳法的原理 √

数学归纳法的简单应用 √

5.计数原理 加法原理与乘法原理 √

排列与组合 √

二项式定理 √

6.概率统计 离散型随机变量及其分布列 √

超几何分布 √

条件概率及相互独立事件 √

n次独立重复试验的模型及二项分布 √

离散型随机变量的均值与方差 √

选修系列

4

中含

4

个专题

7.几何证明选讲 相似三角形的判定与性质定理 √

射影定理 √

圆的切线的判定与性质定理 √

圆周角定理,弦切角定理 √

相交弦定理、割线定理、切割线定理 √

圆内接四边形的判定与性质定理 √

8.矩阵与变换 矩阵的概念 √

二阶矩阵与平面向量 √

常见的平面变换 √

矩阵的复合与矩阵的乘法 √

二阶逆矩阵 √

二阶矩阵的特征值和特征向量 √

二阶矩阵的简单应用 √

9.坐标系与参数方程 坐标系的有关概念 √

简单图形的极坐标方程 √

极坐标方程与直角坐标方程的互化 √

参数方程 √

直线、圆及椭圆的参数方程 √

参数方程与普通方程的互化 √

参数方程的简单应用 √

10.不等式选讲 不等式的基本性质 √

含有绝对值的不等式的求解 √

不等式的证明(比较法、综合法、分析法) √

算术-几何平均不等式、柯西不等式 √

利用不等式求最大(小)值 √

运用数学归纳法证明不等式 √

三、考试形式及试卷结构

(一)考试形式

闭卷、笔试.试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.

(二)考试题型

1.必做题 必做题部分由填空题和解答题两种题型组成.其中填空题14题,约占70分;解答题6题,约占90分.

2.附加题 附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4题,依次考查选修系列4中4—1、4—2、4—4、4—5这4个专题的内容,考生从中选2题作答.

填空题只要求直接写出结果,不必写出计算或推理过程;解答题应写出文字说明、证明过程或演算步骤.

(三)试题难易比例 .

必做题部分由容易题、中等题和难题组成. 容易题、中等题和难题在试题中所占分值的比例大致为4:4:2.

附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试题中所占分值的比例大致为5:4:1.

四、典型题示例

A.必做题部分

1. 函数y=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)

在闭区间[?π,0]上的图象如图所示,则ω= .

解析本题主要考查三角函数的图象与周期,本题属于容易题.

答案3.

2. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 .

解析本题主要考查古典概型,本题属于容易题.

答案.

3.若是虚数单位),则乘积的值是

解析本题主要考查复数的基本概念,本题属于容易题.

答案-3

4.设集合,则集合A中有 个元素.

解析本题主要解一元二次不等式、集合的运算等基础知识,本题属于容易题.

答案6

5. 右图是一个算法的流程图,最后输出的W= .

解析本题主要考查算法流程图的基本知识,本题属于容易题.

答案22

6.设直线是曲线的一条切线,

则实数b= .

解析本题主要考查导数的几何意义,切线的求法,本题属于中等题.

答案.

7.在直角坐标系中,抛物线C的顶点为坐标原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点.若P(2,2)为线段AB的中点,则抛物线C的方程为 .

解析本题主要考查中点坐标公式,抛物线的方程等基础知识,本题属于中等题.

答案

8.以点(2,-1)为圆心且与直线相切的圆的方程是 .

解析本题主要考查圆的方程,以及直线与圆的位置关系等基础知识,本题属于中等题.

答案

9.已知数列{}的前项和,若它的第项满足,则 .

解析本题主要考查数列的前n项和与其通项的关系,以及简单的不等式等基础知识,本题属中等题.

参考答案

10.已知向量,若与垂直,则实数的值为________.

解析本题主要考查用坐标表示的平面向量的加减数乘及数量积的运算等基础知识,本题属中等题.

答案

11.设是

解析本题主要考查代数式的变形及基本不等式等基础知识,本题属中等题.

答案3

12.满足条件的三角形的面积的最大值是_______________.

解析本题主要考查灵活运用有关的基础知识解决问题的能力.本题属难题.

答案

二、解答题

13.在ABC中,C-A=, sinB=.

(1)求sinA的值;

(2)设AC=,求ABC的面积.

解析本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力.本题属容易题.

参考答案(1)由,且,

∴,∴,

∴,又,∴

(2)如图,由正弦定理得

∴,又

14.如图,在直三棱柱ABC?A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1DB1C.

求证:(1)EF‖平面ABC;

(2)平面A1FD平面BB1C1C.

解析本题主要考查线面平行、面面垂直等基础知识,考查空间想象能力和推理论证能力.本题属容易题.

参考答案

(1)因为E,F分别是A1B,A1C的中点,所以EF‖BC,又EF平面ABC,BC平面ABC,

∴EF‖平面ABC;

(2)在直三棱柱ABC?A1B1C1中,,

∵A1D平面A1B1C1,∴.

又,BB1B1C=B1,∴.

又,所以平面A1FD平面BB1C1C.

15. 已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个项点到两个

焦点的距离分别是7和1.

(1)求椭圆的方程‘

(2)若为椭圆的动点,为过且垂直于轴的直线上的点,

(e为椭圆C的离心率),求点的轨迹方程,并说明轨迹是什么曲线.

解析本题主要考查解析几何中的一些基本内容及基本方法,考查运算求解的能力.本题属中等题.

参考答案(1)设椭圆长半轴长及分别为a,c,由已知得w.w.w.k.s.5.u.c.o.m

{ 解得a=4,c=3,

所以椭圆C的方程为 w.w.w.k.s.5.u.c.o.m

(2)设M(x,y),P(x,),其中由已知得

而,故 ①

由点P在椭圆C上得 w.w.w.k.s.5.u.c.o.m

代入①式并化简得

所以点M的轨迹方程为轨迹是两条平行于x轴的线段. w.w.w.k.s.5.u.c.o.m

16.设函数,曲线在点处的切线方程为.

(1)求的解析式;

(2)证明:曲线上任一点处的切线与直线及直线所围成的三角形的面积是一个(与无关的)定值,并求此定值.

解析本题主要考查导数的几何意义,导数的运算以及直线方程等基础知识,考查运算求解的能力,推理论证能力.本题属中等题.

参考答案(I)方程可化为.

当时,.

又.

于是解得

故.

(II)设为曲线上任一点,由知曲线在点处的切线方程为

,

即.

令得,从而得切线与直线的交点坐标为.

令得,从而得切线与直线的交点坐标为.

所以点处的切线与直线,所围三角形的面积为

.

故曲线上任一点处的切线与直线和直线所围成的三角形面积为定

值,此定值为6.

17.(1)设是各项均不为零的n()项等差数列,且公差,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列:

①当时,求的数值;②求的所有可能值;

(2)求证:对于一个给定的正整数,存在一个各项及公差均不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列。

解析本题以等差数列等比数列为平台,主要考查学生的探索与推理能力.本题属难题.

参考答案首先证明一个“基本事实”:

一个等差数列中,若有连续三项成等比数列,则这个数列的公差d0=0.

事实上,设这个数列中的连续三项a- d0,a,a+ d0成等比数列,则

由此得d0=0.

(1)(ⅰ)当n=4时,由于数列的公差,故由基本事实只可能删去或,

若删去,则由成等比数列,得,因,故由上式得 ,即。此时,数列为-4d,-3d,-2d,-d,满足题设.

若删去,则成等比数列,得.

因,故由上式得,即.此时,数列为d,2d,3d,4d,满足题设.

综上,得或.

(ii)当n≥6时,则从满足题设的数列中删去一项后得到的数列,必有原数列中的连续三项,从而这三项既成等差数列又成等比数列,故由“基本事实”知,数列的公差必为0,这与题设矛盾。所以满足题设的数列的项数。又因题设,故n=4或5

当n=4时,由(i)中的讨论知存在满足题设的数列

当n=5时,若存在满足题设的数列,则由“基本事实”知,删去的项只能是,从而成等比数列,故

,及.

分别简化上述两个等式,得及,故d=0,矛盾。因此,不存在满足题设的项数为5的等差数列.

综上可知,n只能为4.

(2)假设对于某个正整数n,存在一个公差为d的n项等差数列,其中三项成等比数列,这里,则有

化简得 (*)

由知,与或同时为0,或同时不为0。

若,且,则有,

即,得,从而,与题设矛盾.

因此,与同时不为0,所以由(*)得

因为均为非负整数,所以上式右边为有理数,从而为有理数.

于是,对于任意的正整数,只要为无理数,则相应的数列就是满足题意要求的数列。

例如取,那么,n项数列1,,,……,满足要求.

B 附加题部分

1.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.

(1)求的分布列;

(2)求1件产品的平均利润(即的数学期望);

(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?

解析

参考答案

(1)的所有可能取值有6,2,1,-2;,

故的分布列为:

6 2 1 -2

0.63 0.25 0.1 0.02

(2)

(3)设技术革新后的三等品率为,则此时1件产品的平均利润为

依题意,,即,解得

所以三等品率最多为

2. 如图,已知点在正方体的

对角线上,记,当为钝角时,求的取值范围.

2.解(1/3,1)

3.选修4—1 几何证明选讲

如图,设△ABC的外接圆的切线AE与BC的延长线交于点E,∠BAC的平分线与BC交于点D.求证:.

解析

参考答案证明:如图,因为 是圆的切线,

所以,,

又因为是的平分线,

所以

从而

因为 ,

所以 ,故.

因为 是圆的切线,所以由切割线定理知,

,

而,所以

4.选修4—2 矩阵与变换

在平面直角坐标系中,已知的顶点坐标为求在矩阵作用下所得到的图形的面积,这里矩阵。

解析

参考答案.1

5. 选修4—4 坐标系与参数方程

在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.

解析

本题主要考查曲线的参数方程的基本知识,考查运用参数方程解决数学问题的能力.

参考答案因椭圆的参数方程为

故可设动点的坐标为,其中.

因此

所以,当时,取最大值2.

6. 选修4—5:不等式选讲

设求证:

解析

参考答案

高考大纲是什么?

高考考纲做了较大修订,有三大变化,增加了中华传统文化的考核内容,完善了考核目标,调整了考试内容。对应这些变化,数学学科也做了相应调整:1、增加了数学文化的要求。2、在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。3、在现行考试大纲三个选考模块中删去《几何证明选讲》,其余2个选考模块的内容和范围都不变,考生从《坐标系与参数方程》、《不等式选讲》2个模块中任选1个作答。

总体上,这些变化对高考数学考试影响不大。基于两个原因,一是在这次高考考纲修订基本原则 “坚持整体稳定,推进改革创新;优化考试内容,着力提高质量;提前谋篇布局,体现素养导向”中,将“整体稳定”放在了首位。、2018年全国数学2卷就突出了稳中求变,约有80%的试题是稳定的,只有约20%的试题是创新的,高考仍然还会沿用这种思路命制试卷。二是近两年高考试卷已先于高考考纲在命题中渗透了一些变化与创新,全国数学2卷最大的变化点是,突出了,强调了中国传统数学文化精髓。在数学文化方面,2018年高考全国2卷理科数学第8题、文科数学第9题涉及到了我国南宋著名数学家秦九韶提出的多项式求值的算法,高考全国2卷文、理科数学的第8题涉及到了我国古代数学名著《九章算术》中的“更相减损术”。这就是说,今年考纲中所提到的新要求、新变化,在两年前的高考中就已经有所体现了,所以高考对我们而言变化不会很大。而第三项变化是选考题由“三选一”变为“二选一”,这将减轻学生的课业负担。

综上,我们可以得出结论,高考命题形式会有一些变化,但整体难度变化不大。针对上述分析,现就高考备考复习提出以下建议:

1、回归教材,一箭多雕

回归教材至少解决三件事,即既解决了考纲对能力内涵方面的基础性、应用性和创新性的要求,又解决了学生对数学文化的初步感知。通过回归教材引导学生重视基础知识、基本技能和基本数学思想方法,进一步强化数学学科核心素养,聚力共性通法。通过回归教材引导学生阅读教材中各章节后面的“阅读与思考”、“探究与发现”和“实习作业”等材料,使学生对教材里中的秦九韶算法与更相减损术,“阅读与思考”中的中外历史上的方程求解、割圆术、海伦和秦九韶、九连环,“探究与发现”中的“杨辉三角”中的一些秘密及祖?原理与柱体、锥体、球体的体积等中华传统数学文化经典实例有所理解,从中感悟到中国古代数学文化与高中相关数学知识之间的密切联系。

2、补充数学发展历史,增厚数学文化底蕴

针对高考数学考纲的变化,高中阶段要重视“数学文化”教学。近两年高考已经考了秦九韶多项式求值算法和《九章算术》中的“更相减损术”,预计今年高考试卷可能会有杨辉三角、祖?原理、割圆术等相关内容出现。我们要积极挖掘这方面的数学文化背景与高中数学知识的内在联系。任课教师可以参考《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等算经十书及《四元玉鉴》、《算学启蒙》、《数书九章》、《测圆海镜》等古典数学名著,从中选取与高中数学有密切联系的具有代表性的案例,每周挤出一小节时间,让学生感受中国古代数学文化历史背景,进一步体会中国古代数学文化之精髓。

3、适度刷题,不求数量,但求质量

临近高考100天,适度刷题是非常必要的。

(1)整套试卷刷题

前面两条建议是所有考生在老师指导下都必须完成的必修课,而在这一部分要依学生的知识能力基础有所选择地采用不同的复习对策。

省重点及市重点靠前考生刷题要以成套模拟卷为主,频率为3套/周,且在周末对本周刷题或模考过程中发现的错题及自己本身相对薄弱部分的习题进行专项集中强化训练。切记,在刷题过程中,一定要养成归纳总结的习惯,做到自觉地举一反三,多题一解,一题多解,一题优解。

其他考生刷题要将成套模拟卷拆解进行专题训练,可以将数学试卷中的11、12、16、20(2)、21(2)去掉后进行训练,也可以根据自己的实际情况再将9、10、15、20(1)、21(1)、选考题第二问去掉后进行训练,频率为1-2套/周,在刷题过程中,要做到有意识地举一反三,多题一解,一题优解。

走特长的考生在前面的基础上再去掉7、8和剩余所有主观题(大题)第二问后进行训练,频率为1套/周,在刷题过程中,做到举一反三,一题优解。

(2)专项刷题

根据自己的弱项或需加强的项确定专项训练内容,将若干张模拟试卷中同类试题集中训练,如将2至3张模拟试卷中的立体几何题集中在一个时间训练,做完后立即核对修正答案并总结得失,然后再选2至3张模拟试卷重复前面的操作,在一至二周内,使用10至20套模拟卷(或高考卷)进行专项组合训练,这种 “狂轰滥炸”式的集中刷题会收到非常好的效果,当然前提条件是必须做到举一反三,多题一解,一题优解。

4、选考题复习策略

究竟选择哪个选考模块做为选考题?这要因人而异,不能一概而论。基础好的考生应该两个模块都复习,考试时以分值最大化为选择标准。中等生应在老师指导下确定自己的主打选考题,在模拟考试和平时训练时解答主打选考题,每次模考后把另一个选考题做一做,再看看答案,仅此而已,不牵扯更多精力,这是防止在高考中发生不会做或不能完整地做出自己的主打选考题时的应对措施。基础弱的同学适合现在就确定选考模块,具体确定选考模块方法是,选择第一问经常得高分的选考模块为高考时的选考题。

5、看题与写题

在复习中,基础好一些的考生不妨试试另一种解题方式?看题不写题,即用眼睛去阅读习题,用脑袋去思考解题,坚决不动笔写题,这对培养阅读能力、训练思维能力都很有益处。但这么做是有先决条件的:一是考生必须有比较扎实的学习基础,二是所做的习题是某类习题的衍生题(变式题)。做衍生题的最大好处是对相关类型习题的解法有了更深层次的理解,便于对此类方法的掌握与运用,而且还可以将该解法进一步延伸拓展,达到举一反三之功效。在同类习题中只要有一道题按高考评分标准进行规范书写,其它衍生题则均可以采用看题方式去做题,这既节省了时间,又锻炼了思维能力。

总之,在上述五条复习措施基础上,还要不断夯实“三基”,强化学科核心素养,重理解轻死记,重创新轻模仿,落实一日一梳理,一周一总结的学习习惯。

变化孕育着机会,机会萌发着成功,勇于面对改革,智慧迎接挑战,把握弯道超车的机会,奇迹就在有心人的前面。

从最近发布的高中课程方案看开始的高考改革

强调继承和发展

普通高中学生上千万,在普及高中教育的呼声越来越大的今天,课程改革首先是要继承已有的成功的经验,保证改革的连续性,只有这样才能够做到改革的平稳过渡。其次才是发展性,其发展重在于修正现行方案中的缺漏之处。所以,各位学生和家长也不需要过渡的焦虑,不要听信一些机构的危言耸听,改革后就会有翻天覆地的变化,不抓紧时间孩子就会落伍。至少在考试的难度上一定不会增加,最有可能出现的情况是考试难度减小,灵活性增强。

课程结构增加选择性

充分考虑学生发展的差异性,外语语种在保持原有外语类型的基础上,增加德语、法语和西班牙语,选择性更多。课程的三大类别必修、选择性必修和选修三部分有机衔接。各学科的必修部分是每一个高中学生都需要完成的考试内容,是高中学业水平考试必定要考查的部分,当然这部分内容相对而言难度会比较小。选择性必修部分是学生在选择这一科目作为升学考试科目是必须要修习的部分内容,难度上肯定会有所提高。选修部分学校各自学校的特色进行设置,体现的是学生的兴趣性,学而不考或学而备考,只是作为升学考试的一个重要参考。所以考生要重视的部分还是每个学科的必修和选择性必修这两部分。

更新教学内容

这部分内容主要是对教材中有误或者更新的知识进行修订,对陈旧的案例进行更换,体现教材与时俱进的一面,整体的知识结构和特点不会有太大的变动。

细化考试要求

各学科的课程方案对每个版块的内容要求、教学提示和学业要求做出了细致的提示,这样的做法更加能够体现课程标准的指导性,发挥指挥棒的作用,与现行的要求相比,最有可能会改变现在课程标准和考试大纲并行的体系,课程标准就能够起到考试大纲的作用,以后也许不会再出现单独的考试大纲,课程标准的重要性进一步提高。学业水平考试明确了各部分的学分要求,学生学习的目的性更加明确。

高考有什么改革方案

1、目前,按照教育部安排,高考改革只在上海市和浙江省进行试点,其它省份及地区还没有开始高考改革。

2、目前网上关于高考改革的谣言很多,大家一定要注意鉴别消息来源,不要被谣言误导。

3、目前高考改革只在上海市,浙江省进行试点,其它省份都还没有实行。按照教育部安排,其它省份的高考改革方案今年上报教育部审批,按照三年早知道原则,最早也要在2017年入学的高一新生开始实行。

2019高考改革看点

改革看点一:铺开3+3新模式,打破传统文理分科旧格局

几乎所有省份的高考改革都打破了旧时的文理分科,采用“3+3”模式,考生总成绩由统一高考的语文、数学、外语3个基础科目成绩和高中学业水平考试3门选考科目成绩组成,各省选考科目池大多为6门,部分省份为7门。高中学业水平考试以不同等级来评判,每一门课程学完即考,外语科目则提供两次考试机会,取最好成绩计入总成绩。

改革看点二:强调素质评价,推行全面素质教育

各省高考改革方案均将高中学生综合素质评价作为学生毕业和升学的重要参考,综合素质评价将考查学生德育品行、身心健康、爱好兴趣、实践能力等方面发展情况,全面推行素质教育。

;

安徽高考文科数学考试大纲有阶乘吗

高考大纲只是一个各省命制考试说明的依据,各省自己的考试说明在此基础上根据实际情况进行调整。

拿数学为例,新课标高考大纲规定选修4系列为选考模块,北京考试说明中文科就对此项不考,而外省的就考。再比如文科新课标大纲不要求空间角与距离,但浙江、天津等省就加入了这个。

高考命题是不超出考试说明范围的。即使用超纲知识可以快速解答的,表达也一律按考试说明内的东西呈现答案,即你所学的知识是够用的。

也就是说你不能从高考考试大纲中得出考什么、不考什么,只是说“有可能”考到。没列出的考点不一定不考(上文已举例),列出的考点也不一定考(如直观图、面面平行证明)

2022高考大纲在哪里看

没有。安徽高考文科数学考试大纲阶乘是计数原理这一章中的一个知识点,高考直接考阶乘的时候基本没有,这个点是为了让你方便掌握排列数和组合数才引入的,这一块主要考排列组合,阶乘基本不考,故安徽高考文科数学考试大纲没有阶乘。

2012福建省高考 文科数学考试大纲

高三网可以看

语文考纲解读:

与2017年相比,2022年高考语文考试大纲变化不大,在考核目标、能力要求、考查范围、试卷结构等方面保持稳定。因此,2017年高考语文全国三套试题对今年的复习备考的题型、题量、命题方向等有重要的借鉴和指导意义,应当认真研究。

数学考纲解读:

仔细对照《2022年高考文理科数学大纲》与2017年相比,会发现两者无论是考核目标、考试范围与要求都没有变动。这说明2022年高考数学科的命题仍然保持相对的稳定。在新的一轮高考改革到来之前,以平稳过渡方式进入新改革。

英语考纲解读:

2022年考纲和2017年、2016年考纲相比没有发生明显变化。但2017年全国卷与往年试卷相比发生了部分变化。其中,试卷融入了中国优秀传统文化,引导学生积极参与中外文化的对话与交流,通过“讲好中国故事”,增强文化自觉和文化自信。从2022年考纲和2017年全国卷来看,预计2022年全国卷将会强调立德树人,重视文化品格,突出人文素养。内容涉及人与自然、人际关系、全球文化和科技创新。同时,展现文化自信,融入创新意识,传承文化精髓。命题人既设计优秀中华传统文化的考查,又注意在命题中融入世界元素,使整套试卷既有传统文化的典雅和端庄,又散发出当代中国和整个世界的蓬勃生命力。

2023陕西成人高考考试大纲(详细)?

我网上转载的希望对你有帮助

2012年高考数学《考试说明》与2011年相比有什么特点和变化?

与2011年相比,2012年的文理科《考试说明》在命题思想、试卷结构、目标与要求等方面都没有变化,不过,部分例题改成了2011年各地高考卷中出现的试题。这些更新、更鲜活的例题,同样是用来解释、说明对考生的知识和能力要求。考试内容方面,和去年相比,理科数学选考内容与要求有所调整,特别是坐标系与参数方程、不等式选讲等取消了去年要求的部分考点。参考试卷改动较大,不过,题型与试卷结构仍保持不变。

今年的理科《考试说明》在“选考内容与要求”中,删除了哪些内容?为什么?

今年的理科《考试说明》在“选考内容与要求”中,删除了部分内容。在“2.坐标系与参数方程”中,删除了两小条:一条是“了解坐标系、球坐标系中表示空间重点的位置和方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别”;还有一条是“了解平摆线、渐开线的生成过程,并能推导出它们的参数方程”。此外,在“3.不等式选讲”中,删除了“会用向量递归方法讨论排序不等式”和“会用数学归纳法证明贝努利不等式”。

为什么要删除这些内容呢?我认为是因为这些内容既繁又难,不易掌握,且应用不广,历年各地高考中基本不会考到,甚至有的都不教它,本着以人为本,实事求是的精神,不如直接删去更好。故称“以人为本定难易,实事求是删繁冗”。

今年《考试说明》参考试卷有哪些改动?

理科试卷总共21小题,其中有13道跟去年不一样。文科试卷总共22小题,其中有9道题跟去年不一样。它体现了高考的命题原则:注重时代性和实践性;函数与导数、数列、三角函数、立体几何、解析几何、概率与统计要占有较大的比例。体现了以人为本,与时俱进的精神。通过对《考试说明》样题的研究,我们发现样题的主要内容仍在传统教材的传统章节中。考试的重难点仍在函数、数列、不等式、三角函数、立体几何和平面解析几何中,因而立足基础成为高考复习的主旋律。故称“年年岁岁意相似,岁岁年年题不同”,“立足基础应万变,直面鲜活仍从容。”

《考试说明》中对知识要求的三个层次要怎样理解?

高考数学《考试说明》指出“对知识的要求依次是了解、理解、掌握三个层次。”考生首先要分清什么是“了解、理解、掌握”。在一个板块里,哪些需要了解,哪些需要理解?又有哪些需要掌握?实际上,这里是说,知识要求由低到高分为三个层次,依次是“知道/了解/模仿” “理解/逻辑判断/判别/应用” “掌握/证明/讨论迁移”,且高一级的层次要求包括低一级的层次目标。

例如《考试说明》中对“函数”的知识要求是:

①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用.

④理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图像理解和研究函数的性质。

在这个部分,没有提出“掌握”的要求,其中“了解”是最低层次的要求,“会求、会算”与“了解”是同一层次的要求;“理解”的层次高于“了解”,要求能用数学语言正确地表达,会比较、会辨别.特别注意④中,对函数的单调性的要求是“理解”,而对奇偶性的要求是“了解”,显然对单调性的要求更高。

如何研读、细读《考试说明》,并吃透《考试说明》?

对《考试说明》,教师要研读,考生要细读。考生尤其要关注例题的解法以及解法后面的一段简短的文字。通过这段文字的说明,考生可以了解知识题的难易程度、能力是通过什么方式来考查的、思想方法是如何渗透在解题思路当中的,这能够帮助考生更好地认识高考的命题特点和方法,更有针对性地展开训练。吃透《考试说明》,复习中要强调数学思维的训练.现在有些考生做题目,知识列了一大堆,叙述似是而非,自以为对,实际上混乱不堪。这恰恰是题海战术的恶果,应付题海,疲于奔命,生搬硬套,囫囵吞枣,这样做的结果是:考生的数学素质得不到提高,培养的考生思维能力和推理能力很差,不能适应大学和社会的需求。

此外,考生还应该把参考试卷当作一份模拟卷,在一轮复习之后,花2个小时时间给自己进行一次“模拟考”,仿真感受一下高考试卷结构,体会参考试卷的考查方式,学习如何在考试中合理分配时间等。

您认为下一段高考复习的策略是什么?

在下一段高考复习有限的时间内,如何使我们的复习充分有效、高效,是我们每位考生、教师及家长应当认真反思的问题。应对新课程高考命题的新理念,新趋势及其命制方法,我们的复习策略,我认为是以下十六字方针:以人为本,以本为本,立足基本,求实悟本。

您是怎样理解在高考命题“以人为本”的理念?

高考试题应充分尊重学生在学习数学方面的差异,力求使不同思维方式的学生都能得到科学的评价,整份试卷的设计应合理,注重整体效应。

以人为本,是要照顾到方方面面,让好生也有发挥的余地,让差生也有成功的体验,让中等生努力之后也能得到理想的分数。比如,2011年福建省高考试卷对好生而言,理科第10题、15题、20题,文科第12题、16题、22题就是有挑战性的问题,是本次考卷中比较有创新的试题,是为好生准备的,当然这样的问题中等生努力一下也是可以做好的。

对差生而言,有非常多考查基本概念、基本运算、基本方法的问题,比如理科1、2、3、4、5、6、11、12、13、14、16、17、21等等,都是容易题,文科1、2、3、4、5、6、7、8、9、13、14、15、17、18也是送分题.对中等生而言,也有发挥的余地,比如理科第7题(文科第11题)可以用等比定理直接求解,也可以分成椭圆和双曲线求解,不同的思考可以得到不同的路径,可以反映学生的差异,再比如文科第9题也是有非常多的方法入手的。还有,理科8、9、18、19题,文科0、11、15、19、20、21等等是中档题,有利于中等生发挥。

2011年高考试卷是在了解学生学习状况的基础上命制的,无疑有利于中学数学教学,有利于实施素质教育。我们认为,2012年高考数学福建省的试卷命题趋势总体还是应该偏重于中等生,也让好生和差生都有自己的空间,如此,便不会偏离以人为本的思路。

在高考复习中怎样贯彻落实以人为本的指导思想?

以三角函数复习为例,基于三角函数高考试题的命题特点和考生的各种不同情况,三角函数应该因人而异,做到因材施教,有效备考,对各个不同层次学生要有不同的备考目标和知能定位。

1、对于体育艺术类等对数学成绩不要求太高的考生,备考复习要注重“引导挖掘,寻找入口,尽能得分”。对于他们来讲,三角函数内容是其最主要的得分点之一,但不能奢望其得高分。复习备考时教师不能简单地告知解题方法,而应引导学生如何挖掘题目条件,找到解题入口(尽管对其他层次学生来讲是非常简单的),让其体会到熟记特殊角的三角函数值,正弦型函数的基本性质,同角三角函数、正余弦定理等对于解题第一步有重要的作用,尽可能用相关知识点尝试解题.

2、对于中等生,备考复习要注重“会而要全,严密规范,力争满分”。绝大部分学生解决三角函数解答题时都能很快找到解题方法,但由于解题不够规范、思维不够严密和计算不够细心造成失误,如忽略角的范围而有多解或漏解现象,三角恒等变形(包括诱导公式,同角三角函数关系和两角和与差的正余弦公式)公式出错,以及数值计算失误.对于这部分学生重点要放在错因分析上,一是要强调解题步骤的规范,二是要强调书写的规范,三是要求学生养成认真、准确、快速计算的好习惯.切实做到会而要全,严密规范,力争满分.

3、对于优等生,备考复习要注重“会而要优,提高效率,确保满分”.对优等生而言,三角函数内容是较为简单的,因此对他们应将目标设定为“没满分就不合格”,特别要强调计算方法的优化和准确性,提高解题效率。只有经过这种严格的要求,才能促使他们改变粗心的毛病,做到在这一内容考查时不失一分。

为什么在高考复习中要以本为本?

为什么要以本为本,套用一句古话:“书中自有考题目,书中自有解题术,书中自有言如玉”。

1、 书中自有考题目

从多年来,特别是2011年全国各地高考数学试题可以明显看出,不少试题来源于课本,是由课本例题或习题加工而来,而有的题目从题型上看几乎就是教科书中典型例题或习题的照搬。

2、书中自有解题术

课本是解题能力的基本生长点,例如阅读能力的培养只能通过阅读来培养,而课本是培养阅读能力的基本素材。高考复习就是应试教学,应试教学的一个目的就在于形成一些模型,把它印记在考生的头脑里,以保证在相应的情境中快速提取,这是对的。问题是,当我们把一切归结为题型教学,把注意力集中在归纳为每一类题目的各种方法时,也必然会遮蔽数学的一些基本东西,甚至是数学的来龙去脉和数学的本质,

数学高考,不可或缺的当然是一些重要结论和基本方法,有一些结论被命名为性质、定理或公式,有些结论只是一道例题或习题,这些结论本身或者推广常常被某一情境隐藏着,成为别出心裁的高考题。只有熟悉课本,才能快速识别它的原型,从而简缩思维过程。在解客观题时,会因这些结论减少工作量;在解解答题时,它也是探寻解题思路、进行合情推理的依据.还有,—些重要的数学思想,考生对知识的直观认识,都是隐含在课本中的。

3、书中自有言如玉

高考复习的重要任务是梳理知识,让知识成为系统。比如,知识框图、知识列表,问题是,他们凭什么得到?当然,教师可以把这些直接告诉给考生,但直接听来的能内化为考生的认知结构吗?最好的方式是让考生自主获得,这些金玉良言都隐藏在课本当中,这实际上是一个重温学习经历的过程,重温课本的过程,也是一个把课本由厚读薄的过程。

数学高考,还需要规范地作答。那么,由谁来示范呢?哪些定理不能直接套用,哪些过程不能省略,哪些表述不能随意,哪些符号不被承认,这些都可以而且只能依据课本。关于解题的表达方式,应以课本为标准。很多复习资料中关键步骤的省略、符号的滥用、语言的随意性和图解法的泛化等,都是不可取的,应通过课本来规范,需要通过课本来正本清源。

三角恒等变换难度降低,为什么考生的得分率仍不高?

三角恒等变换,试题的复杂程度较之以前已明显降低,而考生的作答情况则随着试题变得简单而越来越不尽如人意,这多少有点费解的事实告诉我们,因为考题简单化的趋势导致了模拟题的简单套用.考题简单了,模拟题当然要随之简单,这是无可厚非的。问题不在这里,而在于模拟题的简单使考生忽略了三角公式推导的过程,这个过程是不该忽略的,只有以本为本,才能补回这种缺失。

三角本来无难度,为何未得高分数?

基本概念不理解,混淆特殊角弧度。

未能判定角范围,符号难断正或负。

三变三用欠灵活,重要公式记不住。

来龙去脉不清楚,生搬硬套怎应付?

恒等图象两变换,少用数形相辅助。

不依条件选定理,斜三角形解有误。

奉劝考生抓基础,反思总结多省悟。

怎样理解回归课本?

回归课本绝不是“烫剩饭”,而是通过“回归”,来不断地清晰和把握数学知识结构,不断地形成和完善对数学思想方法的认识作理解,不断地提升综合应用能力,回归课本可以用四个字概括:梳、发、编、变。

(1)梳——梳理知识,理清头绪。梳理出有哪些重要概念?有几条重要定理(公式)?

翻开教材,可以重温学习的历程,回忆学习的情节。比如在细读教材中,要形成这样的几种意识:空集意识、定义域优先意识、讨论公比是否为1的意识、讨论判别式的意识(尤其在直线与圆锥曲线联立求解得到的关键方程中)等;在理解概念时,一定要咬文嚼字,注意细节。如斜率的定义:只有在倾斜角不是90°的直线,它的倾斜角的正切才叫做这条直线的斜率,很多考生常常忘掉这一点。

(2)发——发现规律,发展思维。再现重点知识的形成和发展过程,特别是在这一过程中所产生的数学思想方法,加以提炼。在复习每一课题时,必须联系课本中的相应部分。不仅要弄懂课本提供的知识和方法,还要弄清定理、公式和推导过程和例题的求解过程,揭示例、习题之间的联系及其变换。

在复习训练的过程中,我们会积累很多解题经验和方法,其中不乏一些规律性的东西,要注意从课本中探寻这些经验、方法和规律的依据。

(3)编——编织网络,寻求交汇。理清前后知识结构,将整个知识体系初步建立框架,并有意识地强化知识的横纵联系,形成初步的网络。

要深刻、渗透地去理解和把握教材所蕴涵的数学思想、数学方法和数学精髓,提炼教材中的通性、通法,并加强总结和应用,把它们串成线、形成链,变式拔高,把散乱的珍珠串成精美的项链,使其得以“升华”。

(4)变——变换角度,变式训练。做透课本中的典型例题和习题,要善于用联系的观点研究课本题的变式题。注意通过对课本题目改变设问方式、增加或减少变动因素和必要的引申、推广来扩大题目的训练功能。现行课本一般是常规解答题,应从选择、填空、探索等题型功能上进行思考,并从背景、现实、来源等方面加以解释。

每年的高考试题中都有一些“似曾相识题”,这种“似曾相识题”实际上就是“变式题”。对于一些内涵丰富的习题,考虑一题多变,可以培养考生思维的灵活性及多种应变能力。高考命题人员只允许带现行课本,由此来改编,而不能带任何教辅材料,这说明研究教材的例(习)题具有非常重要的意义。

为什么高考复习要立足于基本?

高考的每一道题都是基本题,80%是纯粹的基本题,20%是烟幕弹笼罩着的基本题。所谓难题,就是在基本题上或多或少地加了些迷惑人的伪装,挖了些陷阱。不会学习的学生盲目做难题,基础永远也不会好;会学习的学生遇到难题,透过现象看本质,云开雾散。

数学考试成绩“不倒翁”的成功秘诀不是把每次考试的难题全部做对,而是在所有基本题中档题上做得滴水不漏。高手之间的较量在于细节,在于基本。高考命题专家构思高考题的思路经常是在基本内容与基本内容之间的交汇点上移植变通、串线整合上大做文章。每年高考数学的压轴难题层层解剖后,都烙有基本内容的影子,都能与基本的知识考点挂上钩。

数学基本知识是高考数学成绩提升的瓶颈,只有梳理知识 形成网络,对数学基本知识有深刻理解和领会时,才能突破这一瓶颈,逐步形成基本技能,实现能力的提升。正如老子所言:“天下之难作于易,天下之大作于细”。

在高考复习中,好多同学都是一听就懂,一看就会,但是一做就错,一考就糊。什么原因呢?

这是因为没有达到应有的思维层次。由于学习有三个能力层次:一是“懂”,只要教师讲解清楚,问题选取适当,同学认真投入,一般没有问题,这是思维的较低层次;二是“会”,也就是在懂的基础上能够模仿,需要在适量的练习中得以体现,相对来说思维上了一个台阶;三是“悟”,要悟出解决问题的道理,能够总结出解题的规律,并且能够灵活应用它解决其他问题,从本质上把握解决问题的思维方法,这是思维的高层次,也是我们追求的目标。正如古人云:“教之道在于度,学之道在于悟”。

不注重数学本质,只对表面的现象感兴趣,一味地通过做大量的模拟试卷,重复操练,是不能提高数学素质的.在高考复习中,只有加强数学知识内在的联系,抓住数学的本质,突出概念的理解和运用,突出思维能力的培养,才能真正提高我们的数学素质.在高考复习中应做到“三性”,即对知识理解的深刻性、掌握的全面性、运用的灵活性,以使我们形成综合性的知识体系。

为什么数学复习要重视记忆力的培养?

由于数学学科本身的特点,同学们普遍重视强化自己的计算、逻辑推理、思维、空间想象、观察、操作、分析、建模等能力,忽视了对自己记忆力的开放培养,甚至于有的同学把记忆力排除在素质范畴之外,只注意知识的学习,不注意记忆方法的掌握。在学习数学时,不仅公式需要记忆,数学中的定义、公理、定理、性质等等需要在理解的基础上进行记忆,常见的解题方法和技巧也需要我们记忆。还有一些典型的例题、习题,本身也非常重要,将这些例习题进一步提炼,就可以成为非常重要的“二手结论”,熟悉这些结论,对考生提高解题速度是大有好处的。

提高记忆的方法有很多:

例如,一元一次不等式的解集:“同大大,同小小,大小小大夹起来,大大小小解不了”。

又如,线面平行判定与性质定理,很多同学老记不住,不妨用《送别》的曲谱填上歌词:

“平面外,一直线,平行面内线,可以推出该直线,平行此平面。

一直线,平行面,过线作平面,可以推出面交线,平行该直线”。

怎样提高复习的质量?

在平时的学习中,你肯定碰到过大量的小结论,这些小结论虽然比定理公式的地位低,但极大地丰富了原有的定理和公式,非常管用,所以你应该按照课本目录顺序,分别认真收集,集中记忆80个以上。

高考数学复习时,不应只是把所学过的数学知识简单地重复,而应该把基础知识从整体上按数学的逻辑结构、知识之间的内在联系,进行整理,还要把平时所学的各个单元的局部的分散的零碎知识,解题的思想方法,解题的规律进行数学联结,并以浓缩成为精华,储存在大脑中,在考试中及时的展开运用,从而能从整体上,系统上,网络上把握知识、思想和方法.学习的规律是“联系帮助理解”,“联系帮助记忆”。正如潘长江的一句名言:“浓缩的都是精华”。

高考数学复习中怎样克服“会而不对,对而不全,全而不优,优而不美”的现象?

“会而不对,对而不全,全而不优,优而不美”是高考中常见的现象,这是主要由于考生审题能力薄弱,解题粗心大意,书写缺乏规范所导致的。因此,在平时训练中要培养科学严谨的学习态度,善于关注学习细节,学会准确表述数学概念、原理,规范书写算法、推理、符号等,是保障高考长分的基础。每份高考数学试卷中肯定有相当数量的体现高考要求与命题理念、凝聚命题者经验与智慧的原创题,这类题情境陌生、形式新颖、结构精巧、他们根本不可能从容不迫、潇洒自如地投入解题活动,不可能花过多的时间和精力去刻意求简、刻意求新。成功的希望完全依赖于平时在知识、技能、思维、心理等方面的积淀,也就是平时的训练有素,要达到“平时的训练有素”,要做到以下四点:

1、要做好规范训练,就要狠抓“三功”,即图功、算功、审读功。

2、注意思维过程的暴露。

3、狠抓规范意识的养成。

4、注意纠错后的补偿训练。

由于时间的关系,今天的访谈就快要结束了,非常感谢周老师,在节目的最后请老师跟考生们讲几句话。明天做客网站的是福州高级中学历史高级教师梁敬党,欢迎考生及家长们踊跃提问

高中数学课程的目标是:“理解基本的数学概念,数学结论的本质,了解概念产生的背景,应用体会其中所蕴含的数学思想和方法”。这既是课程目标,也是高考命题的目标,更是我们高考复习的目标。所以,以人为本,以本为本,立足基本,求实悟本是我们高三复习的成功的根本。

高考大纲在哪里看

成考快速报名和免费咨询: 为了更好适应社会现代化发展的需要,教育部有关部门对2011年版大纲进行了修订,修订后的《大纲》为2023年版,目前新版本考试大纲已经正式发布。

该大纲主要考虑了成考层次和专业的不同。成考专业不同,考试科目也有所不同。高起专,高起本分为文科、理科。而专升本的不同主要在于专业课的不同。具体内容,看下面。

1、成考考试科目

考试总分:高起专(450分)、高起本(600分)、专升本(450)

高起专主要考:语文、数学(文数/理数)和外语

高起本主要考:语文、数学(文数/理数)、外语和理综/文综

(理综考物理和化学,文综考历史和地理)

(外语:英语、日语、俄语选其一)

专升本主要考:政治、外语和专业科目。专业科目不同专业有所不同。

文史类:政治、外语、大学语文;

经管类:政治、外语、高数二;

理工类:政治、外语、高数一;

法学类:政治、外语、民法;

教育学:政治、外语、教育理论;

医学类:政治、外语、医学综合;

艺术类:政治、外语、艺术概论;

农学类:政治、外语、生态学基础

22年各省成人高考预报名入口 (考生由此进入)

不同的层次,考试科目也是不一样的!考试题型、主要内容等,都会在大纲中有所体现。

2、成考各科目考试题型

高起点必考科目主要为:语文、数学、英语。

高起点-语文:

笔试,闭卷考试。试卷满分为150分。考试限定用时为120分钟。

试卷内容及分值语言知识及运用24分现代文阅读41分古代诗文阅读和鉴赏25分写作60分 >>>常见题型:

选择、问答、写作

>>>备考分析:

语文备课注意平时多积累,重点关注作文方面,这部分分数要拿住。诗词的基础分多背,尽量别失分。答题更是要讲格式与学科语言,不是大家用大白话写就可以的。

高起点-数学:

闭卷笔试,全卷满分为150分,考试时间为120分钟。

考试题型及分值占比(理工农医类)代数约45%三角约15%平面解析几何约20%立体几何约10%概率与统计初步约10%考试题型及分值占比(文史财经类)代数约55%三角约15%平面解析几何约20%概率与统计初步约10%

>>>常见题型:

选择、填空、解答

>>>备考分析:

数学的题目40%为较容易题,50%是中等难度题,10%是比较难的题。题型中,选择题占55%,填空题约10%,解答题则约有35%之多。

高起点-英语:

闭卷考试,全卷满分为150分,考试时间为150分钟。

考试题型及分值语音5语法与词汇15完形填空30阅读理解60补全对话15短文写作25 >>>常见题型:

选择、短文对话、书面表达

>>>备考分析:

英语选择题部分比较多,也有需要我们自己书写的地方。学英语无窍门,就是要平时多积累才行,每天背单词好句+习题练习,相信很快你能发现自己的进步。

专升本必考科目为:政治、英语。

专升本-政治:

闭卷笔试,全卷满分为150分,考试时间为150分钟。

考试题型及分值占比马克思主义哲学原理0.28毛泽东思想和中国特色社会主义理论体系概论0.65时事0.07

>>>常见题型:

选择、简答、论述

>>>备考分析:

政治选择题占比53%,辨析题占13%,简答题占20%,论述题占14%,注意不要空题。中等难度题约占50%,较难题为20%左右。

由于还考时事,国际、国内重大事件要关注。

专升本-英语:

闭卷考试,全卷满分为150分,考试时间为150分钟。

考试题型及分值语音5语法与词汇15完型填空30阅读理解60补全对话15短文写作25

>>>常见题型:

选择、短文对话、书面表达

>>>备考分析:

我们应掌握基本的英语语言基础知识并具备一定的语言运用能力,包括基本的语音、语法和词汇,一定的阅读理解、口语交际以及初步的写作能力。英语的较难题占比多一点,约占20%,中等难度题占50%左右。

考生服务:

>>成考报名在线咨询解答

>>最全成人高考报考指南!请仔细阅读!

>>陕西成人高考专业一览

>>成人高考通关资料下载!

为了更好适应社会现代化发展的需要,教育部有关部门对2011年版大纲进行了修订,修订后的《大纲》为2023年版,目前新版本考试大纲已经正式发布。该大纲主要考虑了成考层次和专业的不同。成考专业不同,考试科目也有所不同。高起专,高起本分为文科、理科。而专升本的不同主要在于专业课的不同。具体内容,看下面。

1、成考考试科目

考试总分:高起专(450分)、高起本(600分)、专升本(450)

高起专主要考:语文、数学(文数/理数)和外语

高起本主要考:语文、数学(文数/理数)、外语和理综/文综

(理综考物理和化学,文综考历史和地理)

(外语:英语、日语、俄语选其一)

专升本主要考:政治、外语和专业科目。专业科目不同专业有所不同。

文史类:政治、外语、大学语文;

经管类:政治、外语、高数二;

理工类:政治、外语、高数一;

法学类:政治、外语、民法;

教育学:政治、外语、教育理论;

医学类:政治、外语、医学综合;

艺术类:政治、外语、艺术概论;

农学类:政治、外语、生态学基础

22年各省成人高考预报名入口 (考生由此进入)

不同的层次,考试科目也是不一样的!考试题型、主要内容等,都会在大纲中有所体现。

2、成考各科目考试题型

高起点必考科目主要为:语文、数学、英语。

高起点-语文:

笔试,闭卷考试。试卷满分为150分。考试限定用时为120分钟。

试卷内容及分值语言知识及运用24分现代文阅读41分古代诗文阅读和鉴赏25分写作60分 >>>常见题型:

选择、问答、写作

>>>备考分析:

语文备课注意平时多积累,重点关注作文方面,这部分分数要拿住。诗词的基础分多背,尽量别失分。答题更是要讲格式与学科语言,不是大家用大白话写就可以的。

高起点-数学:

闭卷笔试,全卷满分为150分,考试时间为120分钟。

考试题型及分值占比(理工农医类)代数约45%三角约15%平面解析几何约20%立体几何约10%概率与统计初步约10%考试题型及分值占比(文史财经类)代数约55%三角约15%平面解析几何约20%概率与统计初步约10%

>>>常见题型:

选择、填空、解答

>>>备考分析:

数学的题目40%为较容易题,50%是中等难度题,10%是比较难的题。题型中,选择题占55%,填空题约10%,解答题则约有35%之多。

高起点-英语:

闭卷考试,全卷满分为150分,考试时间为150分钟。

考试题型及分值语音5语法与词汇15完形填空30阅读理解60补全对话15短文写作25 >>>常见题型:

选择、短文对话、书面表达

>>>备考分析:

英语选择题部分比较多,也有需要我们自己书写的地方。学英语无窍门,就是要平时多积累才行,每天背单词好句+习题练习,相信很快你能发现自己的进步。

专升本必考科目为:政治、英语。

专升本-政治:

闭卷笔试,全卷满分为150分,考试时间为150分钟。

考试题型及分值占比马克思主义哲学原理0.28毛泽东思想和中国特色社会主义理论体系概论0.65时事0.07

>>>常见题型:

选择、简答、论述

>>>备考分析:

政治选择题占比53%,辨析题占13%,简答题占20%,论述题占14%,注意不要空题。中等难度题约占50%,较难题为20%左右。

由于还考时事,国际、国内重大事件要关注。

专升本-英语:

闭卷考试,全卷满分为150分,考试时间为150分钟。

考试题型及分值语音5语法与词汇15完型填空30阅读理解60补全对话15短文写作25

>>>常见题型:

选择、短文对话、书面表达

>>>备考分析:

我们应掌握基本的英语语言基础知识并具备一定的语言运用能力,包括基本的语音、语法和词汇,一定的阅读理解、口语交际以及初步的写作能力。英语的较难题占比多一点,约占20%,中等难度题占50%左右。

考生服务:

>>成考报名在线咨询解答

>>最全2022年成人高考报考指南!请仔细阅读!

>>陕西成人高考专业一览

>>2022年成人高考通关资料下载!

成考有疑问、不知道如何总结成考考点内容、不清楚成考报名当地政策,点击底部咨询官网,免费领取复习资料:高考大纲在哪里看介绍如下:

高考大纲可以在“中国教育考试网”官方网站上找到。

高考考纲是指高考中所要考查的知识点和技能要求的总称。高考考纲是高考命题和考生备考的重要依据,对于考生备考和高校招生都有着重要的影响。

高考考纲通常由教育部门和招生高校制定,其中包括各科目的考试范围、考试内容、考试重点和难点等。高考考纲的制定旨在规范高考考试的内容和难度,保证考试的公平性和科学性,同时也为考生提供了备考的重要依据。

高考考纲的内容通常根据各科目的知识体系和教学要求而定,例如语文、数学、外语、物理、化学、生物等科目,其考纲都会根据不同的学科特点和教学进度来制定。同时,高考考纲也会根据时代和社会发展的需求进行不断更新和调整,以适应社会的需求和教育的发展。

高考考纲对于考生备考非常重要。考生可以根据高考考纲中的要求和重点,有针对性地进行备考,提高备考效率。同时,考生也可以在备考过程中根据高考考纲的要求进行知识点的复习和强化,提高自己的考试成绩。

总之,高考考纲是高考命题和考生备考的重要依据,对于保证高考的公平性和科学性、促进教育的发展和提高考生的成绩都有着重要的意义。

文章标签: # 数学 # 高考 # 考试